| K

Rk ; The
M ollege
Board

.Ltl?i EASED EXAMS

]9 9 AP Computer Science A
= and Computer Science A]

CONTAINS:
* Multiple-Choice Questions and Answer Key

* Free-Response Questions, Scoring Guidelines,
and Sample Student Responses and Commentary

» Statistical Information About Student
Performance on the 1999 Exams

-

Advanced Placement Program®

The 1999 AP®° Examinations in :
Computer Science A and Computer Science AB

Multiple-Choice Questions and Answer Keys

Free-Response Questions, Scoring Guidelines, and Sample

Student Responses and Commentary

Statistical Information about Student Performance
on the 1999 Exams

These test materials are intended for use by AP® teachers for course and exam
preparation in the classroom. Teachers may reproduce them, in whole or in part, for
limited use with their students, but may not mass distribute the materials, electronically
or otherwise. These materials and any copies made of them may not be resold, and the
copyright notices must be retained as they appear here. This permission does not apply
to any third-party copyrights contained in the materials.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity.
Founded in 1900, the association is composed of more than 3,800 schools, colleges, universities, and other educational organizations. Each year, the
College Board serves over three million students and their parents, 22,000 high schools, and 5,000 colleges, through major programs and services in college
admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT?,
the Advanced Placement Program® (AP?) and, Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment

is embodied in all of its programs, services, activities, and concerns. i

Copyright © 2000 by College Entrance Examination Board and Educational Testing Service. All rights reserved.

College Board, Advanced Placement Program, AP, College Board Online, College Explorer, and the acorn logo are registered
trademarks of the College Entrance Examination Board. APCD, EssayPrep, and Pre-AP are trademarks of the College Entrance Examination Board.

THE COLLEGE BOARD: EDUCATIONAL EXCELLENCE FOR ALL STUDENTS

e,

The AP Pmcess

B Who Develops the AP Computer Science Exams?

How Are the Exams Developed?
B Section I
e Section II

Question Types
@ Multiple Choice

B Free Response

B Scoring the Exams
8 Who Scores the AP Computer Science Exams?
® Ensuring Accuracy T
B How the Scoring Guidelines Are Created
B

Training Faculty Consultants to Apply the

Scoring Guidelines

Maintaining the Scoring Guidelines

Preparing Students for the Exams

Teacher Support

This chapter will give you a brief overview of what
goes on behind the scenes during the development
and grading of the AP Compurter Science A and
AB Exams. You can find more derailed information
in the “Technical Corner” of the AP website
(www.collegeboard.org/ap).

Who Develops the AP Computer
Science Exams?

The AP Computer Science Development Committee,
working with content experts at Educational Testing
Service (ETS), is responsible for creating the exams.
This committee is made up of six teachers from second-
ary schools, colleges, and universities in different parts
of the United States. The members provide different
perspectives: AP high school teachers offer valuable
advice regarding realistic expectations when matters of
content coverage, skills required, and clarity of phrasing
are addressed. On the other hand, college and university
faculty members ensure that the questions are at the
appropriate level of difficulty for an introductory

college course in computer science. Each member
typically serves for three to four years.

Another person who aids in the development process
is the Chief Faculty Consultant (CFC). He or she
attends every committee meeting to ensure that the
free-response questions selected for the exam can be
scored reliably. You can find out more about the role
of the CFC, and the scoring process in general, on
pages 2-4.

How Are the Exams Developed?

It takes at least two years to develop each AP Computer
Science Exam. The development process is different for
multiple-choice and free-response sections:

Section |

1. Each committee member independently writes a
selection of multiple-choice questions based on the
course content outline.

2. The committee convenes to review these draft
questions, and eliminates any language, symbols, or
content that may be offensive to major subgroups
of the test-taking population. In addition, statistical
procedures help the committee identify possibly
unfair items.

Most of the multiple-choice questions are pretested

(SN

in college classes to obtain some estimate of each
question’s level of difficulty.

4. The questions that make it through these screening
processes are assembled according to test specifica-
tions developed by the committee and, after further
editing and checking, comprise Section I of the

AP Computer Science A and Compurer Science
AB Exams.

The committee controls the level of difficulty of the
multiple-choice section by including a variety of
questions at different levels of difficulty.

Section Il

1. Individual committee members write a selection
of free-response questions based on the course
content outline.

2. The committee reviews and refines draft questions,
and determines which ones will work well for the
AP Exams. They consider, for example, whether the
questions will offer an appropriate level of difficulty
and whether they will elicit answers that allow
faculty consultants to discriminate among the
responses along a particular scoring scale. An ideal
question enables the stronger students to demon-
strate their accomplishments while revealing the
limitations of less advanced students.

In the last stage of development, committee members
give approval to a final draft of all multiple-choice and
free-response questions. This review takes place several
months before the administration of the exams.

Question Types

Each of the 1999 AP Examinations in Computer
Science contains a 75-minute multiple-choice section
and a 105-minute free-response section. The two
sections are designed to complement each other

and to meet the overall course objectives and

exam specifications.

Multiple-choice questions are useful for measur-
ing the breadth of content in the curriculum. In
addition, they have three other strengths:

1. They are highly reliable. Reliability, or the likeli-

" hood that candidates of similar ability levels taking
a different form of the exam will receive the same
scores, is controlled more effectively with multiple-
choice questions than with free-response questions.

2. They allow the Development Committee to
include a selection of questions at various levels
of difficulty, thereby ensuring that the measurement
of differences in students’ achievement is optimized.
For AP Exams, the most important distinctions
are between students earning the grades of 2
and 3, and 3 and 4. These distinctions are usually
best accomplished by using many questions of

middle difficulty.

3. They allow the CFC to coxﬁpare the ability level of
the current candidates with those from another
year. A number of questions from an earlier exam
are included in the current one, thereby allowing
comparisons to be made between the scores of the
earlier group of candidates and the current group.
This information, along with other data, is used by
the CFC to establish AP grades that reflect the
competence demanded by the Advanced Placement
Program, and that compare with earlier grades.

Free-response questions on the AP Computer ~
Science Exams require students to use their analytical
and organizational skills to reason about and write
program fragments that fit the specifications given.
They allow students to demonstrate their understanding
of program structure and their ability to translate that
understanding into a concrete solution. The free-
response format allows for the presentation of
uncommon yet correct responses and permits students
to demonstrate their mastery of computer science

by a show of creativity.

Free-response and multiple-choice questions are
analyzed both individually and collectively after each
administration, and the conclusions are used to improve
the following year’s exams.

Scoring the Exams

Who Scores the AP Computer
Science Exams?

The people who score the free-response section of the
AP Computer Science Exams are known as “faculty
consultants.” These faculty consultants are experienced
computer science instructors who either teach one of
the AP courses in a high school, or the equivalent
courses at a college or university. Great care is taken to
get a broad and balanced group of teachers. Among the
factors considered before appointing someone to the
role are school locale and setting (urban, rural, etc.),
gender, ethnicity, and years of teaching experience. If
you are interested in applying to be a faculty consultant
at a future AP Reading, you can complete and submit
an online application in the “Teachers” section of the
AP website (www.collegeboard.ox'g/ap), or request a

printed application by calling (609) 406-5384.

In mid-June 1999, more than 100 teachers of com-
puter science, about half from colleges and half from high
schools, gathered at Clemson University, South Carolina,
to score the free-response portions of the AP Computer
Science Examinations. Leadership for the AP Computer
Science Reading consisted of two exam leaders (one for
Computer Science A and one for Computer Science
AB), twelve question leaders (two per question), and an
additional two table leaders for the overlap questions
that appeared on both the A and the AB exams. The
faculty consultants were divided into six teams of
varying sizes, with each team responsible for grading
one question. Under the guidance of the Chief Faculty
Consulrant and the Chief Faculty Consultant-Designate,
the question leaders had responsibility for organizing
the details of the Reading and conveying information to
the faculty consultants in the respective teams. _

Ensuring Accuracy

The primary goal of the scoring process is to have each
faculty consultant score his or her set of papers fairly,
uniformly, and to the same standard as the other faculty
consultants. This is achieved through the creation of
detailed scoring guidelines, the thorough training of all
faculty consultants, and various “checks and balances”
applied throughout the AP Reading.

How the Scoring Guidelines Are Created

1. Before the AP Reading, the CFC prepares a draft
of the scoring guidelines for each free-response
question. In the case of Computer Science, a
10-point scale (0-9) is used. A score of 0 means
the student received no credit for the problem.

2. The CFC, question leaders, exam leaders, and ETS
content experts meet at the Reading site a few days
before the Reading begins. They discuss, review,
and revise the draft scoring guidelines, and test
them by pregrading randomly selected student
papers. If problems or ambiguities become appar-
ent, the scoring guidelines are revised and refined
until a final consensus is reached.

3. The CFC, question leaders, and table leaders
conduct training sessions for each free-response
question, which are attended by all the faculty
consultants who are scoring that question.

N

Training Faculty Consultants to Apply the
Scoring Guidelines - -

Since the training of the faculty consultants is so vital in
ensuring that students receive a grade that accurately
reflects their performance, the process is thorough:

1. The faculty consultants read sample papers that
have been pregraded (see above). These samples

reflect all levels of ability.

2. Each group of faculty consultants then compares
and discusses the scores for the samples, based on
the scoring guidelines. ‘ ’

3. Once the faculty consultants as a group can apply
the standards consistently and without disagree-
ment, they begin reading in teams of two. Each
team member scores half of a packet of 25 papers
and then exchanges the examinations with his
or her partner for a second reading. Scores and
differences in judgment are discussed until
agreement is reached, with the question leaders,
the table leaders, or the CFC acting as arbitrators
when needed.

4. After a team shows consistent agreement on its
scores, its members proceed to score individually.
Faculty consultants are encouraged to seek advice
from each other, the question leaders and table
leaders, or the CFC when in doubt about a score.
A student response that is problematic receives
multiple readings and evaluations.

Maintaining the Scoring Guidelines

A potential problem is that a faculty consultant could
give an answer a higher or lower score than it deserves
because the same student has performed well or poorly
on other questions. The following steps are taken to
prevent this so-called “halo effect:”

Each question is read by a different faculty consultant;

B All scores given by other faculty consultants are
completely masked; and

B The candidate’s identification information is
covered. Using these practices permits each faculty
consultant to evaluate free-response answers
without being prejudiced by knowledge about
individual candidates. -

Here are some other methods that help ensure that
everyone is adhering closely to the scoring guidelines:

The entire group discusses pregraded papers each
morning, and as necessary during the day.

B Faculty consultants are paired, so that everyone has
a partner to check consistency and to discuss
problem cases with; question leaders are also paired
up to help each other on questionable calls.

B Question leaders re-read (back read) a portion of
the student papers from each member of his or her
team. This approach allows cach leader to guide the
faculty consultants toward appropriate and consis-
tent interpretations of the rubrics.

B The CFC and the question leaders monitor use of
the full range of the scoring scale for the group and
for each faculty consultant by checking daily graphs
of score distributions.

Preparing Students for the Exams

The AP Computer Science courses (Computer Science A
and Computer Science AB) are designed to be compa-
rable to typical introductory computer science courses
taught in a college or university department of com-
puter science. The content of Computer Science A
is a subset of the content of Computer Science AB.
Computer Science A emphasizes programming method-
ology with a concentration on problem solving and
algorithm development and is meant to be the equiva-
lent of a first-semester course in computer science. It
also includes the study of data structures and abstrac-
tion, but these topics are not covered to the extent that
they are covered in Computer Science AB. Fora
comparison of the topics covered, see the topic outline
in the AP Computer Science Course Description.
Computer Science AB includes all the topics of
Computer Science A, as well as a more formal and
in-depth study of algorithms, data structures, and
abstraction. For example, binary trees are studied in
Computer Science AB but not in Computer Science A.
The nature of both AP courses is suggested by the
words “computer science” in the titles. Their presence
indicates a disciplined approach to a more broadly
conceived subject than would a descriptor such as
“computer programming.” There are no computing

prerequisites for cither AP courst. Each is designed to
serve as a first course in computer science for students
with no prior computing experience. ‘

The following goals apply to both of the AP Com-
puter Science courses when interpreted within the
context of the specific course:

Students should be able to design and implement
computer-based solutions to problems in several
application areas.

B Students should learn well-known algorithms and

data structures. -

B Students should be able to develop and select
appropriate algorithms and data structures to
solve problems.

B Students should be able to code fluently in a well-
structured fashion usifig the programming language
Ca++. Students are expected to be familiar with, and
be able to use, standard AP C++ classes.

Students should be able to read and understand
a large program and a description of the design
and development process leading to such a
program. (Examples of such programs are the
AP case studies.)

Students should be able to identify the major
hardware and software components of a computer
system, their relationship to one another, and the
roles of these components within the system.

Students should be able to recognize the ethical and
social implications of computer use.

As teachers focus on the above goals, they will not only
be preparing their students for the AP Computer
Science Examinations; they will be preparing them for
future study and applications of computer science.

Teacher Support

There are a number of resources available to help
teachers prepare their students — and themselves — for
the AP courses and exams.

AP workshops and summer institutes. New
and experienced teachers are invited to attend work-
shops and seminars to learn the rudiments of teaching
an AP course as well as the latest in each course’s

expectations. Sessions of one day to several weeks in
length are held year-round. Dates, locations, topics,
and fees are available from the College Board’s Regional
Offices (see the inside front cover of this booklet), in
the publication Graduate Summer Courses and Institutes,
or in the “Teachers” section of our website

(see below).

AP’s corner of Coliege Board Online®. You can
supplement your AP course and preparation for the
exam with plentiful advice and resources from our

AP web pages (www.collegeboard.org/ap). .

Online discussion groups. The AP Program has
developed an interactive online mailing list for each AP
subject. Many AP teachers find this free resource to be
an invaluable rool for sharing ideas with colleagues on
syllabi, course texts, teaching tecﬁniques, aﬁd so on,
and for discussing other AP issues and topics as they
arise. To find out how to subscribe, go to the “Teachers”
section of our website.

AP publications and videos. S¢e the Appendix for
descriptions of a variety of useful Tnaterials for teachers.
Of particular interest is the publication that comple-
ments this Released Exam — the Packer of 10. Teachers
can use these multiple copies of the 1999 AP Computer
Science Exam, which come with blank answer sheets, to
simulate a national administration in their classroom.

AP videoconferences. Several videocanferences
are held each year so that AP teachers can converse
electronically with the high school and college teachers
who develop AP courses and exams. Schools that
participate in the AP Program are notified of the time,
date, and subject of the videoconference in advance.
Or, you can contact your Regional Office for more
information. Videotapes of each conference are
available shortly after the event; see the back of this
book for ordering information. .

-

| The 1999 AP Computer Science Examinations

B Exam Content and Format

B Purpose of the Exams

B Giving a Practice Exam

8@ Blank Answer Sheet

B Instructions for Administering the Exams

B The Exams

Exam Content and Format

The AP Computer Science A and Computer Science
AB Examinations seek to assess how well a’student has
mastered the concepts and techniques of the subject
matter of the corresponding college-level computer
science courses. Each examination consists of a 40-
question multiple-choice section and a four-question
free-response section; the sections each contribute 50%
to the composite score. Knowledge of the AP Computer
Science Large Integer Case Study was required for the
1999 AP Computer Science A and Computer Science
AB Examinations. Five of the 40 multiple-choice
questions and one of the four free-response questions
were based on the case study material. Two of the free-
response questions were common to both exams.

The free-response questions covered a variety of
programming techniques. A brief description of the
problems is given here; more details are available in

Chapter III.

B Question Al. A “standard” one-dimensional array
question, this question measures the student’s
facility with one of the most basic data structures,
an array (apvector) of records (structs).

B Question A2. This question, a harder one-
dimensional array question, asked the students
to reason about an ordered array of strings.
Students needed to both understand the string
abstraction and develop correct algorithms for
manipulating the ordered array.

B Question A3/AB2. This question involved reasoning
about the AP Computer Science Large Integer Case

Study. In particular, students were required to add a
member function to the Biglnt class as well as
implement division.

B Question A4/AB1. This question was substantively
different from what would have been asked in
Pascal. Students were provided a context for a class,
given the declaration of the class, and asked to
implement a constructor and two member func-
tions for the class.

B Question AB3. This question examined the student’s
facility with a basic dynamically allocated data
structure, the linked list, and was very similar to,
and somewhat easier than, linked list questions
asked in the past.

Question AB4. This question examined the student’s
facility with binary trees, the other common
dynamically allocated data structure.

The scoring guidelines for the free-response questions,
and sample student responses, can be found in

Chaprter II1.

Purpose of the Exams

Both the AP Computer Science A and Computer
Science AB courses and examinations represent college-
level computer science for which many colleges and
universities grant advanced placement, college credit, or
both. Appropriate credit and placement are granted by
each institution in accordance with local policies. Many
colleges provide statements regarding their AP policies
in their catalogs. The immediate benefits available to
students taking the AP Examination can range from
tuition savings to more flexibility in fulfilling require-
ments for a degree. Students who have completed an
introductory college-level computer science course in
secondary school are also able to pursue more advanced
courses sooner in their college career and, ultimately,

to take more courses in computer science than they
otherwise might. AP Computer Science is a good
option for any student, bur particularly for a student
who plans further study in a quantitative field.

Giving a Practice Exam

The following pages contain the instructions, as printed

in the 1999 Coordinator’s Manual, for administering the

AP Computer Science Exams. Following these instruc-
tions are copies of the 1999 answer sheet and the entire
AP Computer Science A and AP Computer Science
AB Exams. If you plan to use this released exam
material to test your students, you may wish to use the
instructions to create an exam situation that closely
resembles a national administration. If so, read only
the directions in the boxes to the students; all

other instructions are for the person administering the

test and need not be read aloud:Some instructions,
such as those referring to the dafe, the time, and page
numbers, are no longer relevant; please ignore them:
There are also page number references in the exams
themselves that refer to page numbers in the actual
exam booklets. These do not match the page numbers
in this book.

Another publication that you might find useful is the
so-called Packet of 10. It is just that: packets of ten of
the 1999 AP Computer Science A and Computer
Science AB Exams, each with a blank answer sheet.
Information on ordering AP publications is available at

the back of this book.

Instructions for Administering the Exam (from the 1999 Coordinator’s Manual)

°
.

= Important Allow | hour and 15 minutes. Naote the time you will stop
For regular administrations, read ALL of the here . Whilecandidates are working on Section
boxed instructions below except for the box I, you and your proctors should make sure they are marking
marked for administrations using an alternate . answers on their answer sheets in pencil and are not looking
form of the exam. at their Section 11 booklets.

For administrations using an alternate form After I hour and 15 minutes, say:

of the exam, read ALL of the boxed instructions —_—— e
below except for those marked specifically AT THE MAY 11TH
forthe May 11th administration. If these ADMINISTRATIO 0
instructions are being used for a late L . L
administration, all days, dates, and times to be Stop working. Turn to page 40 of the Section I

read aloud should be adjusted as necessary. booklet for C ter S A. and 43 1,
The Computer Science A Examination and the ooklet for Computer Science A, and page or

= - Computer Science AB Examination should be Computer Science AB, and answer questions 41
~ administered simultaneously. through 44. These are survey questions and will
not affect your examination grade. You may not go

The administration of this exam includes survey questions. . . .
) v back at this time to work on any of the previous

The time allowed for these survey questions is in addition :

to the actual test-taking time. questions.

Complete the general instr uctions beginning on
page 34. Then say:

AT ’AN ADMINISTPATION uan’f’"'AN

It is Tuesday afternoon, May 11, and you will
be taking one of the AP Computer Science
Examinations. Check to make sure you have the
correct examination: Computer Science A OR
Computer Science AB. If you do not, please raise
your hand, Print your name, last name first, on the
front cover of the unsealed Section I booklet and
read the directions on the back of the booklet.
When you have finished, look up. ...

Work only on Section I until time is called. Do
not open the Section II package until you are told
to do so. Remember, when you come to the end of
the multiple-choice questions, there will be answer
ovals left on your answer sheet. Scratch paper is
not allowed, but you may use the designated space
in the Section I booklet. Only No. 2 pencils may be
used to mark your answers in Section I. Are there After you have collected an answer sheet from every

any questions? candidate, say:

Stop working. Turn to page 39 of the Section I
booklet for Computer Science A, and page 41 for
Computer Science AB, and answer questions 41
through 44. These are survey questions and will
not affect your examination grade. You may not go
back at this time to work on any of the previous
questions.

Give students approximately 2 minutes to answer the survey
questions. Then say:

Close your exam booklet and keep it closed on
your desk. Do not insert your answer sheet in the
booklet. . . . I will now collect the answer sheets.

Answer all questions regarding procedure. Seal the Section I booklet with the three seals
. When you are ready to begin the exam, note the provided. Peel each seal from the backing sheet
J time here __ Then say: . .

and press it on the front cover so it just covers the
area marked “PLACE SEAL HERE.” Fold it
over the open edge and press it to the back cover.
Use one seal for each open edge. Be careful not to
let the seals touch anything except the marked
areas. ...

The Large Integer Case Study is needed for
questions 16 through 20. It begins on page 45 for
Computer Science A and page 51 for Computer
Science AB.

Open your Section I booklet and begin. You
have 1 hour and 15 minutes for this section of the
exam.

Collect the sealed Section I exam booklets. Be sure you
receive one from every candidate; then-give your break
instructions. A 5- to 10-minute break is permitted. Students
may talk, move about, or leave the room together to get a
drink of water or go to the restroom (see “Breaks During the
Examination™).

Give your break instructions. Then say:

Testing will resume at

After the break, say:

Open the package containing your Section II
booklet. Turn to the back cover of the' booklet, and
read the instructions at the upper left. ... Print
your identification information in the boxes.. ..
Detach the perforation at the top. . . . Fold the flap
down, and moisten and press the glue strip firmly
along the lower edge.. . Your identification
information should now be covered and will not be
known by those scoring your answers.

Read the instructions at the upper right of the
back cover.. ..

 ATTHEMAY11TH

_ ADMINISTRATION ONLY, SAY:

Take one AP number label from your Candidate
Pack and place the label in the AP number box at
the top of the page. If you do not have number
labels left, copy your number from the front cover
of your Candidate Pack into the box.

AT AN ADMINISTRATION USING AN
ALTERNATE FORM OF THE EXAM ONLY, SAY:

Print your initials in the three boxes provided.
"...Next, take two AP number labels from the
center of your Candidate Pack and place them
in the two boxed areas, one below the
instructions and one to the left. If you don’t have
number labels left, copy your number from the
front cover of your Candidate Pack into the boxed
areas.

Item 5 [Item 6 for late a(_l_m;i:nistrations] provides
you with the option of giving permission to
Educational Testing Service to use your free-
response materials for educational research and
instruetional purposes. Your name would not be
used in connection with the free-response materials.
Read the statement and answer either ‘“‘yes” or
“no.”’ ... Are there any questions?

Answer all questions regarding procedure. Then say:

—

If you will be taking another AP Exam, I will
collect your Candidate Pack. You may keep your -
Candidate Pack if this is your last or only AP
Examination.

Collect the Candidate Packs. Then say:

Read the directions fo¥ Section II on the back of
your booklet, Look up when you have finished.
... Are there any questions?

Answer all questions regarding procedure. Then say:

You may proceed freely from one question to the
next. You are responsible for pacing yourself.

AT THE MAY 11TH

_ ADMINISTRATION ONLY, SAY:

You may use the blank areas in your green insert
for scratch paper, but write your actual answersin
the Section II booklet.

The blue booklet contains the Large Integer
Case Study needed for question 3 on the A exam
and question 2 on the AB exam.

AT AN ADMINISTRATION USING AN
ALTERNATE FORM OF THE EXAM ONLY, SAY:

The peach booklet contains the Large Integer
Case Study needed for question 2 on the A exam,
and question 3 on the AB exam. If you need more
paper, raise your hand. Are there any questions?

Answer all questions regarding procedure. Then say:

(Open the Section II booklet. -

7 here

Tear out the green insert in the center of the
booklet. . . . Print your name, teacher, and school
in the upper left-hand corner of the insert. I will
be collecting this insert at the end of the
administration. It will be returned to you at a later
date by your teacher.

B2 When you are ready to begin the exam, note the time
> here . Then say:

Begin work on Section II. You have 1 hour and 45
minutes for this section of the exam.

A Allow 1 hour and 45 minutes. Note the time you will stop
. You and your proctors should check to be
sure all candidates are writing their answers in the Section
II booklets. :

After 1 hour and 45 minutes, say:

Stop working. Close your Section Il booklet and
keep it closed on your desk. I will now collect your
booklets. Remain in your seats, without talking,
while the exam materials are being collected.
You will receive your grade reports by mid-July
and grades will be available by phone beginning
July 1st.

Collect the Section II booklets, tgeéreen inserts, and the
blue [peach] Large Integer Case Study booklets. Be sure

you have one of each from every candidate. Check the back

_of each Section II booklet to make sure the candidate’s AP

number appears in the box [two boxes for alternate
administrations]. The green inserts and the blue booklets
must be stored securely for no less than 48 hours (2 school
days) after they are collected. After the 48-hour holding
time, the inserts and booklets may be given to the
appropriate AP teacher(s) for return to the students. If this
is a late administration, the peach booklets must be
returned to ETS.

When all examination materials have been collected,
dismiss the candidates. . .

Separate the Computer Science A Exam materials from
those for Computer Science AB. Fill in the necessary
information for the Computer Science Examinations on
the S&R Form. Alternate exams should be recorded on
their respective line on the S&R Form. Put the exam
materials in locked storage until they are returned to ETS
in one shipment after your school’s last administration. See
“Activities After the Exam.” =

11

@ k4 w & v o 4 3 ULUUVGOG N HECYOHN H0-9458cO VOPLINYC AL @ L4900 « cU0Y T

‘piROg uopBURUEXT soueLUg 863100 Byl JO SyIBWapE) paslsiBas B
ase 000] U028 oy PUB gV ‘WrIB0I4 Juswade|d pasueapy ‘preog abajjon i ; @ @ @ @ @ @ @ @ o Q Solsnels SINJRIBNUTT LOoURIA LG
‘pantasal sybu |y "aoinag Buysa) [euoneanpl @& ® pojusIn ainessy ysiued afenbue] youst

0 : g T Wt T 16 © od ABojoyoAsd 20UBIDG [RILAWIUONAUT ov
) ® © AINO 380N TO0HIS g 310 soishud ‘dwiog g aumesa)] ‘Bug Vi
‘801A19S YoIBag Jwepnig ey ybnoly) swelboid diysiejouos . IeN] Yo 1O SAISAY "dwoy g sbenbueT Buzy 9€
[ejuBWILIBAOB puUE ‘SanisIaAIuN ‘safialjo0 0} aw Noqe ® ® 0000 000« C g soshud OJOBJ 1SOILIOUDT ge
uoleULIO puds o} preog abe)jo) ay} juem jou op ['oN () ®© ® 2L Ll oL 6 L 9 S v € Z | Aioay] oISNpy QDA ISOIIOU0DT e
) @ @ UOIBUILLEXD g sninojeD gy 9ousis sepndwio) £e
O 0 Sy} Ul palamsue noA suonsanb Aesse gy snnojen v dousIog 1eindwos ig
"SW OYlf SUBPNIS uf paisallul sweboud @ © BUHo sisquinu & _mncsmww_\,%swcwm_mmm ainjeie (une Ansiwayp sz
diysiejoyos piusuiuianoh pue ,mm:_whmz:m ‘sabe}joo 0} 8w i 11B1aA tune ABojoig 02
Inoge uolewIcUl puas o} pieog abajjon aypuem | 'spy () ‘08 0d OLAFLONYLSNI SSHINN abenfue ysybu3z [euoneUIBiY| [EIBUSD) OIPMIS MY Sl
‘e o NOILLDIS SIHLALATdINOD 10N 04 'H -dwog 'jog B ‘A0D Bumel(] IpnIS [y 1
1 SN 710d B A0D RioisiH 1y el
A.mo.LE. € 10 IHOWOHAOS & 918 nok §| ANO a18idwon) afenBue) Jsyjouy afenfuet uewsy { AosiH'sn O 20

AHVOd 39371100 HHL 40 JOIAHIS HOHVYAS INIANLS d SWiEs 8y Inoge TEGWIU pue WU CO_Hm—\.:mem 10} MOBQ {BAO m&&_hao‘_aam au ul g

abBenbug| Jauiour pue ysibug

Sm__mcm JOWBU uoRUIWEXD WUy
oN () soA () ¢1s9g mowy nof op afienbuel 1eum D L1IAHS HIMSNY SIHLONISN NINYLEE OL NOUVYNINYXE dv o
BYOo ® _ _
; ¢afaoo je Bupuels awum @ |19]9|9]|0|0 9@) Pele|e|leee|e|e|e|e|e Nd § ®
. |arowoydos 1oy Buifjdde g nok M. 'O | o1uedsIH 18410 10 ‘UBdLIBWY [BIUSD Jelele & plelelele|eie|e|® O ® Wd ¥ ®
ST ‘uBOUBIY Ui UBOHAWY NS @ k| @ | ©) | ©) @ P ele0 988|888 Wd € .
ueag opend @ (@@ |6 & o8 e e ees e s Nd 2
200z (3 papispun 13pUE(S| Dlji0Bd J0 ‘UBDLBLIY UBISY 'UBISY o066 o ® DO 0| o ndt O
ooz © Jewwng OuBOIY 0 UBSLBWY LB § [0 | @ | © 0 0eeo0eeloo|o|e wdak O
000z @ Bupdsyisuim UBOLIBWY UBOLYY JO YoRIg) OO0 © © G| oo o Wy LE O
6661 ® e SAEU UBNSE]Y IO UBIDU| UBdlBUWY) 01e|8& © ® e 996 ® v ok O
©o|e @ 9 06 06 @ nwe O
0190 o) 0 9 oo oo) wve O
#0310 Gao3aXA N dNOD OINHLZ W lo|o|o]e|o|o|o]a|a alo|eloloolelo|o]e| w2 O
e ©10|9 o 9|09 o) Qo 0|00 © wwe O
s - == e o : o < A1) ® OIETARS @ SRS & Ava AVIN
® ® |& jwaDa | Byo @ |8 CARCARCARC! B0 e|e|e 40 NI Ava
@l |® @® [onOw jif sbenoo ©® |0 0|00 9 Blelo|lale ey "Nigy
ol |0 @le |[wOo | |erebuet ® ||¢ 9|99 o I 2 d
] © ©|6@ s ()eo | leprBuil @ © 0] ® 0] OARGANG) G Ble & 6|6 @ 6
€ 5 By () go || epeab Qo)) 0] 0] 0 0] OAORN0] 0] @@ 60 0|0 & §
) ® fop () 20 || epeibuis () @ & &) 0] CAETARY)) 2|0 © B0 @O
) aunr () 90 |- ©) ® & 90 8 o @0 @ 0|0 @ ©
o fen Qg0 | | J3AFT 0 0 e) 010]6|0]0|0|e|e @ 9|0 © &
0 0f awy (vo || AT 110 9 9 glolelelolo|elo © 0|o @ ©
@ B © ey (Jeo | @ @ @ @ glele @ 8l ® Bl @ ®
[%4 () 20 ﬂiillf[@ 9 9 : @ @lele|le|0e|e|le @ 0|0 @ @
uer () 1o sewad @ || @ @ @ @ @ @@ 0|6 @ CACRCIRON RO ORI OINO)
o | fea | won o () ® ® @ @) X EORRARY) & P00 0|0 0 @ 6
HAGNNN . -] T 1
ALIHND3S VIDO0S 1 | HiHg H0 H1va
— m—— P = - T T N $13118} ¢4 141§ - swieN i1s4id SI8119] Gi 184} - BWEN IseT
m 2G >AZG<N¢<®—IPNHNJ&EQQ 1 40 1p ‘seydosysode ‘suaydAy ‘saoeds yuiQ _ IFNYN D HIENNN dV HNOA "8
Qm<om mwml—l—oo mII—n idde 8634109 1ok vo seadde | S8 aweu JnoA ubig
1 3OVd oWBlb0Id JuUsWwade|d PaoUBADY ‘Jd3H 199v
‘ A 20Ug Jomsu counpaooid pue 53910 S EIE0I o) O 815 S 1 1 | SOnBpE Uy 050 o1 pENES H3IgNNN
&m>® E‘_On_ mmm_- N_Z _._Oh ¥ r_w < =mc%oww___omﬂc2m=.%_z%m ay _m%m __._w., Mcm m:oﬂmhc m_o_.%;u.:m_ __%E mrw mw_m 0 nm>”=uwv_mm;~ @&4 NU<|—&
JaUlo U0 U MOYfE [| ‘9B gy A Jo ApIeA 8y} pue wexa au) jo Aunoas ay) ueew o) | AHMIVNDIS 'V

‘NOLLVNINVYXE AHIAZ 1V vIHY SIHLI1d1dINCD — | V3HVY
@ 6 @ é & 6 ¢ & 0 66 @

3] Advanced Placement Program® PAGE 2
P THE COLLEGE BOARD

Q THIS SECTION IS FOR THE SURVEY QUEST!ONS IN THE CAND!DATE PACK. {DO NOT PUT HESPON§E$ TO
' EXAM QUESTIONS IN THIS SEGTION.) BE SUHE EACH MARK IS DARK AND COMPLETELY FILLS THE OVAL

1®® O ® ® ‘P O®O®®
2 ® © © & 5 @ © © ®
3 ® © o ®
DO NOT COMPLETE THIS SECTION UNLESS INSTRUCTEDTO DO SO. o Ly

R. If this answer sheet is for the French Language, French Literature, German Language, Spanish Language, or Spanish
Literature Examination, please answer the following questions. (Your responses will not affect your grade.)

1. Have you lived or studied for one month or more in a country where the
language of the exam you are now taking is spoken? O Yes O No

2. Do you regularly speak or hear the language at home? O Yes O No

INBICATE YOUR ANSWERS 0 THE EXAM QUESTIONS lN THIS SECTION lF A QUEST[UN HAS ONLY FOUR ANSWER

IRORONCORORG) % ® ® @ ® 51 0 & © ©® ®
2 ®E® O ® G 27 ® ® @ ® 52 & © ® G
HOBOBONONG 28 ® ® ® & 58 ®® OO
L OROBONOREG, 29 ® ® @ ® 59 & ® © ©® &
5D ® 0 ®® SRORORORORE 50000
P E®O®® 3 ® ®® 5 ®E® O ®®
1T OO ®® 82 ©® S ONONCROSG)
P OO ®® B8 e ® @ ® B S OHORONONG)]
B OB®O® DO OO 0B ®OOG
e e e ®® B OO O ®.) © ®®
"HoO®®O®® B’ ® ® ® ® 61 O ® © ® ®
2®® o ®® V7 ®® ® ® 2 ®® O o e
I OBORONONG, /- ®® ® ® I ONORONCORG)
EEOROBORORC) I ®® ® ® B ®® © ©®
5O ERCRCECRORSY 5D OO ®®
DO HOOO®O 6D ®®D®

®C ®© ©® ' D : 7TE®®O®®

®O0 00 POEO®O® P®O®®
= © e e D0 O ® RORONCRONG)
02®®00 00 ® B OO OE ® ©®®
NI ONORORONCG) % ® ® @ G ONORCRONG)
2 ®Ee O e a7 ® ® ® ® ONORORONG)
EEONONORONE) 8 ® ® ® ® ®e o e’
24 ®® OO 9 ® ® ® ® ORORCGROREG)
K ONONCORONG) 50 & ® ® ® ONONOGRONO)

FOR QUESTIONS 76-151, SEE PAGE 3.

2

MULTIPLE-CHOICE BOOKLET
SERIAL NUMBER

@@@@@@@@@@@@@@@@@ @@@@@@@@
oooooooooooooocoooooooo‘oo
@@@@@@00.@@@@@@0..0@@@@@@@

b e 1 LA : <

- v T v

elereleleloleetofoRooRofooj el icioaccele]e
000PPE00NNPNN0NNNNNNPOOOE
crefelelelelekeiolelelelelelelelcio eicereelele)
oo0....0.00‘0000000000000
CLELCICRCECICICRCICICICACICICICICICICCCICACCLS)

123456,7.,89_0123456789012345

PAGE 3

‘TA2:

efefoeleleleloReierelofeReleReloReicoRoyoReely
OJONONCRCRCRCHCHCNCRCRONORONSRSROICHONCACNONORCRY)
00ROPOOEOPOOHROPOOLROPOOROO
ORONCIS ISR SISO CRORORORONCHOF R CROACHCRCRORON)
CICICICICICICICICICICACRCHCRCHOR O CRCACACACACACS

—

BE SURE EACH MARK IS DARK AND COMPLETELY FILLS THE OVAL. IF A QUESTION HAS ONLYFOUR

ANSWER OPTIONS, DO NOT MARK OPTIONE.

®
£
o
&
o)
8]
2
o
o
=
@
£
@
3]
©
o
©
5]
6]
c
o
>
T
<€

0 THE COLLEGE BOARD

14

& 00660

®© 00

1. YOUR MAILING ADDRESS

* INDICATE A SPACE IN YOUR ADDAESS BY LEAVING A BLANK BOX AND FILLING IN
THE CORRESPONDING DIAMOND ((3) BELOW THE BOX.

* USING THE ABBREVIATIONS GIVEN IN YOUR CANDIDATE PACK, FILL ADDRESS
INTO BOXES PROVIDED. IF YOUR ADDRESS DOES NOT FIT, SEE ITEM 2 BELOW.

* YOUR GRADE REPORT WILL BE
MAILED TO THIS ADDRESS N JULY.

1a.
COUNTRY

CORE

POOEPEOOE®D® |
[SlslolatGiatatSIao)
RO ERO@® |

ZIP OR POSTAL CODE

DEOHRLLEEOEDLOREDEREEEEEEED®
@EPOCELDOEOOETEREEROREOEEREEORDLE®
DL ICEROOERLEEERDOEE®EE®
BEOOTHRELLDBOIRDOERDOOEOERO®
RO DEREEICLDEEEOEROD
[Glalaiaiaioialalslalaiaislalolalalialalaialalalalole))
ROOLOOECORIETERORTLERORDRRO®
[elalaiololalolalslolaialslalalalaiaiaiaialalalalala)
REeCEROOLICROOEOEEEROEOEE®RE®®

STATE

Puerto
Rico

28 () NE
29 () NV
30 () NH
31 () N
2 () NM
3 () NY
34 () NC
3 () ND
3 () OH
37 () OK
3 () OR
s () PA
@ {) A
4 () s
w2 () s
a () ™
44 O X
() Ut
() VT
a7 () VA
5 () WA
a9 () wy
50 () Wi
st () wy
20

53 () Other

AL
5

0

2 () AK
3 () Az
+() AR
5 () cA
s () co
7() cr
8 () DE
s () bc
w () FL
1 () GA
12 () HI
13 () ID
()
15 () IN
() 1A
7 () KS
8 () KY
19() LA
20 () ME
21 () MD
2 () MA
3 () M
2 () MN
2 () MS
26 () MO
a7 () MT

COOEROLEO®®

COOEEeEEE@®

[SIGINIASIOIISICICIID)
0@ OEE®®O
oOEODE@®D
SEEHEEECE®D
EoOEEOEE®®D
2CEEEOe®Em

OAOROEDE®®

[SIGIOIGHOICIOISICHC]

SOoTEEEEREE@®]

COORR@OO®® |

City

CREOERROROOIBDORROROODEDODRE®
COREDERRRROEERORROOTEREREDHREE®
lolalolalalalolslololalsisislolsiaialalalalalalelolo)
CHOCOTHEROOOSTEROOOTODORODDO®
CREVEEOOEOODOPROOEOOEDOOODHE®
CRECREOREROEEREPEROOCEDEREERE®
ololalolalalolalalaiaialalasiiaialalalaiolalolatoly
fealolalalolaiatalaloialalalalcialolGiaiolololalalolo)
CROCOODDOECERORADDVOEEHERODHDRGE®

jegelalololaialalalolaisialalaiolalclalalaledatolalolo]
CREOERREOEERTEDOEOETEERDRRE® .

jetsloloiaiaiaiolalsiatalialalalololoioiaioloiololalaoloy

BOOEROEEO®®

@R eEEE®

DOOEROOO®® |}

Area Code

PEEDEROO@®@D |

[OAGHGH LA ECRICHCR

[SISIIGISIOIGISIICON

Street

CRECRTDLOOCODRROCECTEDOODDRIO®
CTCREOETLOOROORTERORCETEODDEE®E®
CREOVEOOCOROODIDRODREDDOOODO®
CRECREDOOOORIIDIODRDARDTDDD®O®
CRECODHTOORDORDVROEODEDDOED
CRECEDORDORRIDDOODOPDDOD®D®
CEROEOCODERDOODIEPOCDDODDODE®DT
CERPORPOROOODDODORDODEODDD®D®
CBECOVECIOODOEPCODODOODOBE®
CRPCOPOODORTOIROOTOPODODOD®
TROVECTOTEOHRIERPOTBOOOODDO®
CROCOPOROEODODIOCOODEODODDO®
SEROOTHOOOCDCROCDCORCOODBHDD
CERECOPODOOORDIDOEDOOEDDDDRED®
CORTDTRRCOOROEDTOCOOOROOSBDEE®
CREOPODDDODDIDDOEODDEOORDDO®
CREORDBEROODDEREODOEODDOODO®
CROOODOTRODDOORODOODRODD®O®
CRPOVEBPECTOORODICORDDPOOORBOD
CRECODOODOODODEOOOOREODDDD®
elololelalololatolot N lololatalalot ol YT]
CERCRIOROOODTOPDODOCRDODDDE®
SERPOVTRODOODTEOCOCOOOODDIRED®
CREOVCEDEODODDODDOOBODODDDE®D®
SCREOETBHEDOODDIOPDROOODRDRO®
CERPROEBEODORDIDDODDODODODDO®

ZDoEouwm
UL TOZW

m

[GGG

DODEREEE@E®|

DO HOE®ED
[CH IO IR AT

ORI |

POEEROBREB®EOD

POODREREDEE®®D |

(O ECOREHEEORCIRGIECIICHLEN]
PoEOROEEE®D
(SIIHOICGHGIOIIOICHN

CCOEDEOE@E® |
DEOEBDOERE®ED]
DOOEROEEEE@D|

SEHREEEEReE®D
[SICIIOISIOIEISICICHIS]

POEERREREOS|
POPPDELOROD|
POEERORRROD|

DOORROEEE@ED
DCEEOCBEO®ED®
[SISISGIAGIAISICLCINS]
OO EE®®
SIS AGIOACASICOLCIIS]

PEEPHIDRO®OD|
PEOOEBDORB®DD

f

2. If the address gridded above is not complete enough

5, COLLEGE"VI'OVRECEIVE YOUR AP GﬁADES

4. SCHODL YOU ATTEND "

&
@
o g
@ «©
T =
- B2
e
S
O Q
? o3
O <9
g o,
g £ §
o £ @
e 2% £
S 2g 3 ®
GE’cum. S g‘ =
g 388 o @
zZ O % 8 g
=
S 8978
L o2e
c 56
OO@@
EEQ
T o3
= Q
28>
BE2E
8 Slolctolaipicls ofof
g , g 22
© POOEROOO@®@®
9 Sloiotolololcte c o
2 : :
8] POPERRPORE®

for delivery of your grade report, please fill in this oval —p ()

and print your complete address below.

5

22

35
2 85
T T g
» ¢o
-
© 9O
£ 8 2
5 83 g

. OF z > L
%«s-o 3 3)

£ 2 3 &
T = © =}
Egm &
3 g8
s 50
Q=
D 484

59

=20 d

|

v

PEPCEROTO®
3 CHIEDREODD®
© CETOIBOOE®
> Do
g PORERE@EODD®
° loooeenece®
POPEDEOBEODD®

@
8 (=]
2
3 @
o kvl
o S
5 3
2 Z
5
[&
o
2
Nl @
@
>
2 2 z
] ° B
3 2 z 3
< < o Q
&

16

Computer Science A

.COMPUTER SCIENCE A o

—

CALCULATORS, REFERENCE MATERIALS OR OTHER AIDS ARE NOT TO BE USED DURING
THE EXAMINATION.

Three hours are allotted for this examination: 1 hour and 15 minutes for Section I, which consists of 40 multiple-
choice questions, and 1 hour and 45 minutes for Section II, which consists of 4 free-response questions. In
determining your grade, the two sections are given equal weight. Section I is printed in this examination booklet.
Section II is printed in a separate booklet. In addition, following Section I there are 4 survey questions to be
answered in 2 minutes.

SECTION 1

Time — 1 hour and 15 minutes
Number of questions — 40
Percent of total grade — 50
Section I of this examination contains 40 multiple-choice questions. Therefore, please be careful to fill in
only the ovals that are preceded by numbers 1 through 40 on your answer sheet when answering the

examination questions. Also, please be careful to fill in the ovals preceded by the numbers 41-44 when
answering the survey questions.

General Instructions

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE INSTRUCTED TO DO SO.

INDICATE ALL YOUR ANSWERS TO QUESTIONS IN SECTION I ON THE SEPARATE ANSWER SHEET.
No credit will be given for anything written in this examination booklet, but you may use the booklet for notes
or scratchwork. After you have decided which of the suggested answers is best, COMPLETELY fill in the
corresponding oval on the answer sheet. Give only one answer to each question. If you change an answer, be sure
that the previous mark is erased completely.

Example: " Sample Answer
Chicago is a & S DB
(A) state
(B) city

(C) country
(D) continent
T (E) village

Many candidates wonder whether or not to guess the answer to questions about which they are not certain. In

this section of the examination, as a correction for haphazard guessing, one-fourth of the number of questions

you answer incorrectly will be subtracted from the number of questions you answer correctly. It is improbable,
therefore, that mere guessing will improve your score significantly; it may even lower your score, and it does take
time. If, however, you are not sure of the correct answer but have some knowledge of the question and are able
to eliminate one or more of the answer choices as wrong, your chance of getting the right answer is improved,
and it may be to your advantage to answer such a question.

Use your time effectively, working as rapidly as you can without losing accuracy. Do not spend too much time on

questions that are too difficult. Go on to other questions and come back to the difficult ones later if you have
time. It is not expected that everyone will be able to answer all the multiple-choice questions.

Copyright © 1999 College Entrance Examination Board and Educational Testing Service. All rights reserved.
Certain test materials are copyrighted solely in the name of ETS.

17

COMPUTER SCIENCE A
SECTION I
Time—1 hour and 15 minutes
Number of questions—40
Percent of total grade—50
Directions: Determine the answer to each of the following questions or incomplete statements, using the available
space for any necessary scratchwork. Then decide which is the best of the choices given and fill in the correspond-

ing oval on the answer sheet. No credit will be given for anything written in the examination booklet. Do not spend
too much time on any one problem.

Note: Assume that the standard libraries (e.g., iostream.h, fstream.h, math.h, etc.)and the AP C++
classes are included in any programs that use the code segments provided in individual questions. A Quick
Reference to the AP C++ classes is provided on pages 41-43.

1. Consider the following program.

int main()

{

int k, sum;

do

{
cout << "Enter a nonnegative number to sum, ";
cout << "negative number to cquit:";
cin >> k;

if (k > 0)
{

sum += k;
3

} while (k >= 0);
cout << sum << endl;
return 0;

}

The program contains the incorrect use of an uninitialized variable.
Which of the following is the first line in which this occurs?

(A) k in "cin >> k"

B)kin "(k > 0)"

(C) sum in "sum += k"

(D) k in "sum += k"

(E) sum in "cout << sum << endl"

Unauthorized copying or reusing
any part of this page is illegal.

18

Computer Science A

USE THIS SPACE FOR SCRATCHWORK.

—

Questions 2-3 refer to the following functions.

int Add(int x, int v);
// postcondition: returns X + y

int Multiply(int x, int vy);
// postcondition: returns X * y

2. What is the value of the expression Multiply (3, Add(4, 5))?

(A) 12
(B) 17
) 23
D) 27
(E) 60

3. Consider the following expression.

Multiply (2, Add(Multiply(a, b), Add (Multiply(a, c¢), Multiply(b, c))))

Which of the following corresponds to this expression?

(A2 *a *b +a*c+ b *c
B)a*b+a*c+b*c+ 2
(C)2 * (a*b+ (a*c+b*c))
Dya * b+ (a*c+ b *c)
(Eya * b+ (a*c+ b *c) *2

Unauthorized copying or reusing
any part of this page is illegal.

GO ON TO THE NEXT PAGE

USE THIS SPACE FOR SCRATCHWORK.
4. Consider the following function.

int Something(int a, int b)

{
if (b <= 1)
{
return a;
}
else
{
return Something(a, b - 1);
- } . . - N
. }

What value is returned by the call Something (4, 6) ?

Ay 4

B) 6 - :

(C) 24 o ' -
(D) 1296

(E) 4096

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science A (i3

USE THIS SPACE FOR SCRATCHWORK.

— -

5. Consider the following incomplete function.

int Total (const apvector<int> & scores)
// precondition: The sentinel -999 occurs somewhere in scores

{
int k = 0;

int sum 0;

while (scores[k] !'= -999)
{

<program statements>

}

return sum;

Function Total is intended to return the sum of the integers in
parameter scores, beginning with the first integer in scores
and up to, but not including the sentinel ~999 (which occurs some- .
where in scores). Which of the following code segments could be
used to replace <program statements> sothat Total will

work as intended?

(A) sum += scores([k];
k++;

(B) k++;
sum += scoresl[k];

(C) k++;

sum += k;

(D) sum += k;

k++;
(E) if (scores[k] != -999)
{
sum += scores[k];
}

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPACE FOR SCRATCHWORK.

— -

6. Consider the following code segment.

apmatrix<int> M;
Initialize (M) ; // resizes M to be a square matrix
// and initializes its elements

int k;
for (k = 0; k < M.numrows (); k++)
{
sum += M[k] [M.numrows () - k — 17]; . .
}

Assume that after the call to Initialize, M represents
the matrix shown below.

6 1 2 3 -
0|1 |1]|1,)1 -
1|/1]2]3)4
2121222
3, 2|4 ,6/|8

What value will sum contain after the code
segment is executed?

(A) 4
(B) 8
(© 13
(D) 20
E) 42

Unauthorized copying or reusing
any part of this page is illegal.

| 22

Computer Science A f;;Sect’}ion I

USE THIS SPACE FOR SCRATCHWORK.

—

Questions 7-8 are based on the following incomplete function.

int Fun(int x, int y)

// precondition: (x * y) 2 0

// postcondition: returns a value = 0

{

<body of Fun>

} :
Assume that <body of Fun> is replaced with code so
that Fun meets the specification defined by its precondition

= and its postcondition.

7. What can be assumed about the value returned by the
call Fun(0, 0) ?

(A) The valueis O.

(B) The value is not equal to™ 0.])

(C) The value is less than or equal to 0. ; .-
(D) The value is greater than or equal to 0.

(E) No assumption can be made about the value returned.

8. What can be assumed about the value returned by the call
Fun (-1, 1) ?

(A) The value is -1.

(B) The valueis 0.

(C) The value1s 1.

(D) The value is greater than or equal to 0.

(E) No assumption can be made about the value returned.

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPAC’E FOR SCRATCHWORK.

—

9. Consider the following definitions.

apvector<char> A(100);
apvector<char> B(100) ;

Consider the following code segment.

int k = 0;
while ((k < A.length()) && (A[k] != B[k]))
{
k++;
. } . . .

Which of the following must be true after the while loop terminates?

(A) k >= A.length{()

(B) ¥k < A.length(

—

(C) (k < A.length()) && {A[k] !'= B[k]) -
(D) (k >= A.length()) || (A[k] != B[k]))
(B) (kx >= A.length()) || (A[k] == B[k])

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science A [Tl

. USE THIS SPACE FOR SCRATCHWORK.

10. Consider the incomplete function PowerOf given below.
The call PowerOf (n, x) should return the quantity n" .

int PowerOf (int base, int power)

// precondition: power 2 1
// postcondition: returns base

{

int result;

if (<expressionl> == 1)
- { N
s result = <expressionz> ;
}
else
{
result = <expression3> * PowerOf (base, power - 1);
} . .
return result; e . - ~

} N B

Which of the following could be used to replace <expressionl>, <expressionZ2>,and
<expression3> sothat PowerOf will work as intended?

<expressionl> <expressionl> <expression3>

(A) power base result
(B) power base power
© power base base
(D) base power result
(E) base power base

Unauthorized copying or reusing
any part of this page is illegal.

25

USE THIS SPACE"'FOR SCRATCHWORK.
11. Assume A is defined as follows.

apvector<int> A(5);

Consider the following code segment.

int k;
for (k = A.length() - 1; k > 0; k--)
{
Alk] = Alk - 11;
}

Assume A contains the following values before the code
segment is executed.

0 1 2 3 4

10|15 20|25 30| : -

What values will 2 contain after the code segment is executed?

(A) |10] 10|10 10|10

(B) | 10| 10| 15|20 25

(C) | 10| 1520|2530

(D) 15|20 25|30]30

(E) | 25|25| 25|25/ 25

Unauthorized copying or reusing
any part of this page is illegal. -

| GO ON TO THE NEXT PAGE

26

Computer Science A [SI-T0dl

USE THIS SPACE FOR SCRATCHWORK.

— -,

Questions 12-13 concern the following data structure, designed to
store information about hiking trails in the United States.

struct Trail

{
apstring name; // name of trail
apstring state; // location of trail
double distance; // length of trail in kilometers
apvector<bool> goodMonths;
// goodMonths[k] == true i1f this trail is good for hiking in month k;
// otherwise, goodMonths[k] == false
Trail () ;
// constructor initializes goodMonths to length 12
};

12. Assume that T is an initialized variable of type Trail and the integers
j and k represent valid months. Which of the following expressions always
evaluates to true if the trail represented by "T is good for hiking during month
j or k 7

(A) T.goodMonths[j] && T.goodMonths[k]
(B) T.goodMonths[j] || T.goodMonths [k]
(C) (T.goodMonths == j) || (T.goodMonths == k)
(D) (T.goodMonths == j) && (T.goodMonths == k)

(E) T.goodMonths[j] == T.goodMonths (k]

Unauthorized copying or reusing k
any part of this page is illegal.

27

USE THIS SPACE'FOR SCRATCHWORK.

—

13. Consider the incomplete function PrintTrails given
below. PrintTrails should print the names of the trails
in its parameter trailArray thatare good for hiking in
the month specified by parameter month.

void PrintTrails(const apvector<Trail> & trailArray, int month)

{
int k;
for (k = 0; k < trailArray.length{(); k++)
{
<Jloop body>
-) . . - -
. }

Which of the following could be used to replace <loop body>
so that PrintTrails works as intended?

(A) if (trailArraylk].goodMonths [month])

{ - T
cout << trailadrray[k].name << endl; N
}
(B) if (trailArray[month].goodMonths[k])
{
cout << trailArray[month].name << endl;
}
(C) if (trailArray[k] == month)
{
cout << trailArray(k].name << endl;
}
(D) 1f (trailArray.goodMonths == month)
{ .
cout << traillArray.goodMonths.name << endl;
}
(E) 1f (trailArray.goodMonths[k] == month)
{
cout << trailArray.goodMonths[k] .name << endl;
i

Unauthorized copying or reusing
any part of this page is illegal.

28

Computer Science A [0
USE THIS SPACE FOB SCRATCHWORK.

14. Consider the following incomplete function. -

int Mystery (int k)

{
if (k <= 0)
{
return 0;
}
else
{
return (<missing code>);
- } .
. }

Which of the following could be used to replace <missing code>
so that the value of Mystery (5) is 15 ?

RS (A) ¥k + Mystery(k - 1) -~

o (B) k * Mystery(k - 1)

(C) Mystery(k - 1)

(D) Mystery(k + 1)

(E) Mystery(k - 1) * Mystery(k + 1)

Unauthorized copying or reusing
any part of this page is illegal.

| GO/ON TO THE NEXT PAGE

\ USE THIS SPACE FOR SCRATCHWORK.

— -

15. Assume that an array contains 100 integers sorted in increasing
order. Two alternatives to search the array for a particular integer
are a sequential and a binary search. When searching for a value
that is in the array, which of the following best characterizes the
greatest number of items in the array that will be examined during
each kind of search?

Sequential Binary

(A) 100 1
(B) 100 7
-- (C) 100 50
- (D) 50 7
(E) 50 25

Unauthorized copying or reusing
any part of this page is illegal.

s

USE THIS SPACE FOR SCRATCHWORK.

—

Questions 16-20 refer to the code from the Large Integer case study.
A copy of the code is provided as part of this exam.

16.

17.

18.

The BigInt functions assume that BigInt values are repre-
sented with no leading zeroes. The function Normalize isused
to remove leading zeroes when necessary. Suppose that all calls to
Normalize were removed. Which of the following functions
would no longer work correctly?

(A) operator+
(B) operator*
(C) ToDouble
(D) ToInt

(E) LessThan

The following statement is often used in BigInt function definitions.

BigInt result{lhs);

Assuming lhs is of type BigInt, what is the purpose of this statement?

(A) To make a copy of lhs and store the copy in result
(B) To make a copy of result and store the copy in lhs
(C) Toinitialize result to 0

(D) To initialize lhs to 0

(E) To declare function result with lhs asa parameter

The following code segment from a client program is intended
to find the absolute value of a BigInt. However, the code
segment does not work as intended.

BigInt big;

cout << " Enter a large number ";
cin >> big;

if (big.IsNegative())

-{
big *= -1;
}

Which of the following describes the error in the code segment?

(A) An integer cannot be multiplied by a BigInt.

(B) cin cannot be used witha BigInt.

(C) IsNegative () isnota member function of the class BigInt.

(D) IsNegative () is a private member function of the class BigInt,
therefore it cannot be used by the client program.

(E) The condition big.IsNegative () isincorrect and must be
changed to IsNegative().

Unauthorized copying or reusing
any part of this page is illegal.

31

USE THIS SPAGE FOR SCRATCHWORK.
19. Suppose the BigInt class is redesigned so that the private data
member mySign ischanged to be of type int . The expression
mySign == +1 indicates thatthe BigInt is poSitive, and
mySign == -1 indicates thatthe BigInt is negative.
Which of the following member functions would also need to
be changed to implement this new design?

I. IsNegative
II. LessThan
III. operator<

(A) Lonly : . . .
(B) Il only
(C) Tand Il only
(D) II and 111 only
(E) L 1II, and IHI
20. Function Power takes two parameters, base and exponent. -
Power is intended to return a BigInt that represents the value
of base tothe exponent power. Assume that base and
exponent will only take values within the range of an int
variable for your machine and that exponent 1is always non-
negative. Which of the following is the best declaration for the
function Powexr?

(A) void Power (int base, int exponent, BigInt result);

(B) void Power (BigInt base, BigInt exponent, BigInt result);
(C) BigInt Power (int base, int exponent);

(D) BigInt Power (Biglnt base, int exponent);

(E) BigInt Power (BigInt base, BigInt exponent);

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science A Sectmn

USE THIS SPACE FOR SCRATCHWORK.

—

21. The program for a video game will use several graphics routines.
The program design team plans to place these routines in a graphics
class, which can be compiled separately from the video game program.
Which of the following would be an advantage of this plan?

I. The graphics routines can be tested independently of the video
game program, thus making it easier to locate errors in both the
graphics routines and the video game program.

[I. The programmers assigned to write the video game program
can focus on the issues of that program without spending time
considering how the graphics routines will be implemented.

III. The graphics class will be available for use in other programs.

(A) Tonly

(B) Iand Il only

(C) Tand Il only

(D) II and IIT only - .
(E) L 11, and III T * -

Unauthorized copying or reusing
any part of this page is illegal.

Tas

USETHB§E§CEFORSCRATCHWORK
22. Consider the following code segment to print a calendar.

int month, year;
cout << "Enter vyear: ";
cin >> year;
for (month = 1; month <= 12; month++)
{
PrintHeading (month, vyear);
PrintDays {(month, vyear);

}
Consider the following function.

void PrintDays (int month, int vear)

{
int day;
PrintSpaces (month, year); // indent the first week of the month
for (day = 1; day <= NumDaysIn{(month, vyear); day++) ‘
{

cout << day << " *;
if (EndOfWeek(day, month, year))
{

cout << endl;
}
}
}

Suppose that when the program is run, every month is printed
correctly except for February, for which only a heading and
some white space is printed. Of the following functions, which
is most likely to contain the error?

(A) NumbDaysIn

(B) PrintSpaces
(C) EndOfWeek
(D) PrintHeading
(E) PrintDays

Unauthorized copying or reusing
any part of this page is illegal. -

34

Computer Science A EXail0)}

&) USE THIS SPACE FOR SCRATCHWORK.

—

23. Consider the following code segment.

int row, col;

int sum = 0;

apmatrix<int> A;

Initialize(A); // resizes A and initializes its elements

for (row = 0; row < A.numrows({); row++)

{
for (col = 0; col < A.numcols(); col++)
{
= - sum += Afrow] [col]; . ‘
e - } a
}

Which of the following best describes the result of executing
the code segment?

(A) Each element in the two-dimensional array A contains the . —
value 0. R

(B) Each element in the two-dimensional array A contains the
sum of its row number and its column number.

(C) Each element in the two-dimensional array A contains the
sum of all preceding elements in two-dimensional array A.

(D) The variable sum contains the sum of the values in the
two-dimensional array A.

(E) The variable sum contains the value row * col.

Unauthorized copyi i Ea i A
e arne e negn 0| N-TO THE NEXT PAGE |

5]

USE THIS SPACE FOR SCRATCHWORK.

24. Consider the following code.

apmatrix<int> M;
Initialize (M) ; // resizes M to be a sguare matrix
// and initializes its elements

Which of the following code segments correctly sets a diagonal
of the two-dimensional array M to contain all zeroes?

(A) int row = 0;
) int col = 0;
- - while ((row < M.numrows()) && (col < M.numcols()))
h {

M[row] [col] = 0O;
row++;
row = col;

}
(B) int row = 0; T ' O
int col = 0;
while (row < M.numrows ())
{
Mlrow] [col] = 0;
row++;
col = row;
col++;
}

(C) int row = 0;
int col = 0;
while (row < M.numrows())
{
M[row] [col] = 0O;
Trow++;

}

(D) int row;

for (row = 0; row < M.numrows(); row++)
{

M[row] [row] = 0;
}

(E) int row;
for (row = 1; row <= M.numrows(); row++)

Unauthorized copying or reusing
any part of this page is illegal.

36 |

Computer Science A [0

USE THIS SPACE FOR SCRATCHWORK.

25. For each hour of the day, a weather station records temperature
using integer values, and pressure, wind speed, and wind direction
using values of type double. Of the following definitions of
dailyRecord, which would be most suitable for recording
these weather readings for one day?

(A) apmatrix<int> dailyRecord (24, 4);
(B) apvector<int> dailyRecord(96) ;

. (C) struct WeatherInfo

{
int temperature;
double pressure;
double windSpeed;
double windDir;
Y

WeatherInfo dailiRecord;

(D) struct WeatherInfo

{
int temperature;
double pressure;
double windSpeed;
double windDir;

Y

apvector<WeatherInfo> dailyRecord(24);

(E) struct WeatherInfo

{
int temperature;
double pressure;
double windSpeed;
double windDir;

Y

apvector<WeatherInfo> dailyRecord (366 * 24);

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPACGE FOR SCRATCHWORK.
26. C++ classes can include both public and private data members
and member functions. Which of the following statements
represents the best design decision regarding the public and
private sections of a class?

(A) All data members should be public to make it easier for
client programs to use such data.

(B) All member functions should be public to facilitate future
changes to parameter lists of member functions.

(C) All data members should be private to minimize the

- dependency between client programs and the manner

~ in which data is stored in the class.

’ (D) Some member functions should be private to minimize
memory usage.

(E) All data members should be public and all member
functions should be private to make it easier to modify
the class without requiring ch?nge§ in the code of the - o~
client program. -

Unauthorized copying or reusing
any part of this page is illegal.

60 0N T0 THE NEXT PAGE

38

Computer Science A (-]

USE THIS SPACE FOR SCRATCHWORK.

-

27. Consider the following function.

bool SomethingDifferent (bool p, bool q)

{
return ({(p || Q) && !{(p && q));

}

What does function SomethingDifferent retun?

(A) SomethingDifferent alwaysreturns false.

(B) SomethingDifferent alwaysreturns true.

(C) SomethingDifferent returns true whenever p is false.

(D) SomethingDifferent returns true whenever g is false.

(E) SomethingDifferent returns true whenever p isnotequalto qg.

Unauthorized copying or reusing
any part of this page is illegal.

39 |

USE THIS SPACE FOR SCRATCHWORK.

-

28. Which of the following statements would best characterize
a well-designed program?

I. Functions can be tested independently before
integrating them into the final program.
II. Client programs know about, and take advantage
of, implementation details of abstract data types.
III. The algorithmic details of the abstract data types
can be altered without changing client routines.

(A) Tonly
- (B) Il only
= (C) land II

(D) Iand III

(E) I and III

Unauthorized copying or reusing
any part of this page is illegal.

e

Computer Science A Sectlon

‘ USE THIS SPACE FGR SCRATCHWORK.

— e,

29. Consider the following program.

void One{int a, int b)

{
a=>b+ 1;
b=a+ 2;
}
void Two (int & a, int & b)
{
B a =b + 1;
= - b =a+ 2;
) }
void Three(int & a, int b)
{
a=>b + 1;
b =a+ 2; - .
' int main()
{
int x, Vv;
x = 1;
Yy = 2;
One(x, v);:
Two (x, V);
Three (x, v);
cout << X << " " << y << endl;
return 0;
3
What is the output of the program?
Ayl 2
(B) 4 4
(C) 65
(D) 6 8
(E) 5 8
oIS e 60.ON TO THE NEXT PAGE

41

USE THIS SPACE FOR SCRATCHWORK.

— -,

30. Consider the following definitions and code segment.
apvector<int> A(7);
int x;

for (x = 0; x < A.length(); x++)

{
Alx] = x;
}
for (x = 0; x < A.length(); x++)
{ .
= Alx / 3] = Alx]; %
- }

What values will A contain after the code segment is executed?

(AYO 0 1 1 1 2 2

B0 1 2 3 4 75 6 -
©1 2 0 1 2 0 1 -
M2 3 4 5 6 0 1

BE)2 5 6 3 4 5 6

Unauthorized copying or reusing
any. part of this page is illegal.

N

31. Assume that A isanarray of N integers and that variable k
has a value intherange 0 < k < N. Also assume that the
following assertion is true:

for all j, 0 < 3 <k, A[j] < A[j + 1]

Which of the following is a valid conclusion?

(A) All elements of A are in'increasing order.

(B) All elements of A are in decreasing order.

(C) Elements 0 through k of A are in increasing order.
(D) Elements 0 through k of A are in decreasing order.
(E) The smallest valuein A isstoredin A[O].

Unauthorized copying or reusing
any part of this page is illegal. ~

43

Computer Science A [154l

USE THIS SPACE FOR SCRATCHWORK.

USE THIS SPACE FOR SCRATCHWORK.

—

32. Consider the following code segment. Assume that neither
<condition 1>, <condition 2>, nor <condition 3>
changes the value of k.

int k = 0;

if (<condition 1>)
{

k++;

}
if (<condition 2>)
{

k++;

}
if (<condition 3>)
{

k++;

}

~

What are the possible final values of k -after the code ‘ .
segment executes?

(A) Oonly

(B) 1only

(C) Oor 1 only
(D) 1,2, 0r3 only
(E) 0,1,2,0r3

Unauthorized copying or reusing
any part of this page is illegal.

60 00 T0 T NEXT PG

Computer Science A SGCtlon

USE THIS SPACE FOR SCRATCHWORK.

— -,

33. Consider designing a data structure to represent the positions
of 50 game pieces on a 100 x 100 gameboard. (The position of
a game piece is the row and column number of the square that
it is on.) Two alternatives are described below.

Method 1. Use a two-dimensional array of Boolean values
indexed by row and column number, where each
array element represents one square of the gameboard.
If there 1s a game piece on that square, then the array
element is true; otherwise, the array element 1s false.

Method 2. Use a one-dimensional array in which each element
represents the position of one game piece (i.e., the row
and column number of the square that it is on).

Which of the following is true?

(A) Method 1 is not suitable if two gariie pieces can occupy the same
square of the gameboard.

(B) Method 2 is not suitable if two game pieces can occupy the same
square of the gameboard.

(C) Printing the positions of all game pieces can be done more
efficiently by using Method 1 than by using Method 2.

(D) Determining whether there is a game piece on a particular square
{given the row and column numbers) can be done more efficiently
by using Method 2 than by using Method 1.

(E) Removing the game piece from a particular square (given its row
and column numbers) can be done more efficiently by using
Method 2 than by using Method 1.

Unauthorized copying or reusing
any part of this page is illegal.

600N TO THE NEXT PAGE. |

45

34. Consider the following function.

void Print (int count)
{
int k;

if (count > 0)

{
cin >> k;
Print (count - 1);
cout << k << endl;
}

}

Of the following, which best describes what is printed as a
result of the call Print (10) ?

(A) Nothing is printed because a run-time error occurs.

(B) Nothing is printed because thé if condition never
evaluates to true. '

(C) Ten integers are printed in the same order in which
they were read.

(D) Ten integers are printed in the reverse order in which
they were read.

(E) Only the nonzero values that were read are printed; they
are printed in the same order in which they were read.

Unauthorized copying or reusing
any part of this page is illegal.

46

USE THIS SPAGE FOR SCRATCHWORK.

— .,

Computer Science A -

USE THIS SPACE F@R SCRATCHWORK.

—

35. Consider the following code segment.

apvector<int> A;

Initialize(A); // resizes A and initializes its elements
int k;
for (k = 0; k < A.length(); k++)
{
Swap (A[k], A[A.length{() - k - 11);
}

- Assume that function Swap interchanges the values of its parameters.
T Which of the following best characterizes the effect of the for loop?

{A) It sorts the elements of A.

(B) It reverses the elements of A,

(C) It reverses the order of the first half of A and leaves the second
half unchanged. - : '

(D) It reverses the order of the second half of A and leaves the first
half unchanged.

(E) It leaves all of the elements of A in their original order.

Unauthorized copying or reusing
any part of this page is illegal.

47

USE THIS SPAGE FOR SCRATCHWORK.

—

36. The following declaration and incomplete function is
intended to sort an array of unique integers in increasing
order using the quicksort algorithm.

void Partition{apvector<int> & A, int first, int last,
int & pivotPos);

void QuickSort (apvector<int> & A, int first, int last)
{

int pivotPos;

. // If the subarray has at least 2 elements, partition . .
% // and recursively sort the two partitions.

if (first < last)
{

Partition (A, first, last, pivotPos);

<statement§> - _ - -~
} E ; e
}

The variables first and last are the indices of the first and last elements
in the subarray of array A to be sorted. The function Partition

performs the task of splitting the array into two subarrays around a pivot

point, pivotPos, chosenby Partition. Afterthecallto Partition,
the subarray from A[first] to AlpivotPos - 1] contains integers

that are less than A{pivotPos], and the subarray from A[pivotPos + 1]
to A[last] contains integers greater than A[pivotPos]. The element
A[pivotPos] isin its final sorted position.

Which of the following can be used to replace <statements> so that
QuickSort will work as intended?

(A) QuickSort(a, first, pivotPos + 1);
QuickSort (A, pivotPos - 1, last);

(B) QuickSort (A, last, pivotPos);
QuickSort (A, pivotPos, first);

(C) QuickSort(a, first, pivotPos - 1);
QuickSort (A, last, pivotPos + 1);

(D) QuickSort (A, first, pivotPos - 1);
QuickSort (A, pivotPos + 1, last);

(E) QuickSort (A, pivotPos - 1, first);
QuickSort (A, last, pivotPos + 1);

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science A

USE THIS SPACE FOR SCRATCHWORK.

— -

Questions 37-38 refer to the following information.

Consider the following class declaration.

class Restaurant

{
public:
// Accessors .
apstring Name () const; // returns the restaurant's name
double Price() const; // returns the price of a meal

// (all meals in a specific
Al - // restaurant cost the same) . .
b int Capacity () const; // returns the maximum number of
// customers the restaurant can
// serve at one time
// Other member functions not shown

private: - .
apstring myName; © // the restaurant's name o
// other data members not shown

Y

Unauthorized copying or reusing
any part of this page is illegal.

G0N T0 THE NEXT PAGE

49

37. Assume that a client program declares and initializes rList
as follows:

apvector<Restaurant> rList;

Initialize(rList);

Which of the following code segments correctly prints the names
of all the restaurants whose meal price is under $10.00 ?

int r;
for (r = rList.length() - 1; r >= 0;
{
if (rList[r].Price() < 10.00)
{
cout << rList[r].Name() << endl;

}

) -
II. int x;
for (r = 0; r < rList.length(); r++)
{ if (rList[r].Price() < 10.00)
: cout << rList[r].Name() << endl;
) }
. int r;
for (r = 0; r < rlList.length(); xr++)
{ if (rList{r].Price() < 10.00)
{ cout << rList[r] .myName << endl;
) }
(A) Ionly
(B) II only

- (C) I and I only
(D) O and III only
(E) L, I1, and III

Unauthorized copying or reusing
any part of this page is illegal.

w0

r--)

USE THIS SPA€E FOR SCRATCHWORK.

— -

//resizes rList and initializes its elements

G0N TO THE NEXT PAGE

. USE THIS SPACE FOR SCRATCHWORK.

—,

38. Consider the following function.

void PrintSomeRestaurants (const apvector<Restaurant> & rLlst)
// precondition: rList.length() > 0
{ .

int r;

int numRests = rList.length();

double sum = 0.0;

double average;

for (r = 0; ¥ < numRests; I++)
P { N
E sum += rList[r].Price{();
}
average = sum / numRests;
for (r = 0; r < numRests; r++)
{
if ((rList(r].Capacity({) >= 50) && ({(rList([r].Price() < average))
{ o : o~
cout << rList[r].Name() << endl; R
}
}
}

Of the following, which best describes the behavior of
PrintSomeRestaurants ?

(A) It prints the name of the first restaurant whose meal
price is below the average of all restaurants.

(B) It prints the name of the first restaurant whose capacity
is at least 50 and whose meal price is less than the
average for the meal prices for all restaurants.

(C) It prints the names of all restaurants whose capacity is
at least 50 and whose meal price is below the average
for the meal prices for all restaurants.

(D) It prints the average of the meal prices of all restaurants.

(E) It prints the average of the meal prices of all restaurants
whose capacity is at least 50.

Unauthorized copying or reusing | .
any part of this page is illegal.

60 0N T0 THE NEXT PAGE.

51

39. Consider the following code segment.

x
Y

ty;
tx;

il

Assume that x and y are initialized variables of type bool.
Which of the following statements is (are) true?

1. The final value of x is the same as the initial value of x.
II. The final value of v is the same as the initial value of v.
L. The final value of x is the same as the initial value of y.

(A) Tonly
(B) Honly
(C) III only
(D) Iand IT
(E) Hand III

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPACE FOR SCRATCHWORK.

Computer Science A

USE THIS SPACE FOR SCRATCHWORK.

— e

40. Assume that functions RowSum and ColSum, declared below, have been implemented correctly.

int RowSum(const
// precondition:

// postcondition:

/7

int ColSum(const
// precondition:

// postcondition:

//

apmatrix<int> & A, int k);
A i1s a square matrix, 0 £ k < A.

returns the sum of the elements
row k of array A

apmatrix<int> & A, int k);
A i1s a square matrix, 0 < k < A.

returns the sum of the elements
column k of array A

numrows ()
in

numcols ()
in

Consider the partially written function MagicSqguare, shown below. MagicSquare should return
true if and only if every row and every column of its parameter A sums to the same value.

bool MagicSquare (const apmatryix<int> & A)
// precondition: A i1s a sguare matrix

{
int k;
int sum

for

{
if
{

(k 0;

RowSum (A,

k < A.numrows () ;

0);

k++)

(<condition>)

<statement 1>

}
3
<statement 2>

}

Which of the following could be used to replace <condition>, <statement 1>, and
<statement 2> sothat MagicSquare will work as intended?

<condition>
(A) ((RowSum (A, k)
\

((RowSum (A, k)
&& (ColSum (A, k)

(ColSum (A, k)

(B)

(C) ((RowSum (A, k)

&& (ColSum (A, k)

(D) { (RowSum (A, k)
|| (ColSum(Aa,k)

(E) ((RowSum(A, k)

&&

Unauthorized copying or reusing
any part of this page is illegal.

= sum)

1=

(ColSum(A,k;

<statement 1>

return (false) ;
= gum))
sum) return(false);
= gum))
= sum) return (true);
I'= sum))
== sum) return(true) ;
== SL]_m))
= sum) return(true);
== sum))

<statement 2>

return (true) ;

return{true) ;

return(false) ;

return (false);

returh(false);

END OF SECTION 1

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY
CHECK YOUR WORK ON THIS SECTION.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO SO.

Unauthorized copying or reusing
any part of this page is illegal.

54

41.

42.

43.

44.

SURVEY QUESTIONS 2

Approximately how many class periods did you spend using the Large Integer case study?

(A) O

(B) 1-2

<€) 3-5

(D) 6-10

(E) More than 10

Approximately how many hours did you spend working on the computer on problems related to the Large
Integer case study?

(A) 0

(B) 1-2

(€) 3-5

(D) 6-10

(E) More than 10

At what time during the school year:did you use the Large Integer case study?

(A) Did not use it.

(B) Used it right before the AP examination.
(C) Used it only in the middle of the year.
(D) Used it only at the beginning of the year.
(E) Used it at multiple times during the year.

How many students are in your AP Computer Science class?

(A) Independent study
(B) 2-5

(©) 6-10

(D) 11-20

(E) More than 20

56

Computer Science A ’Q‘u' :

1)
..

Quick Reference for apstring

extern const int npos; // used to indicate not a position in the string
// public member functions

// constructors/destructoxr

apstring(); // construct empty string **
apstring(const char * g); // construct from string literal
apstring(const apstring & str); // copy constructor

~apstring() ; // destructor

// assignment

. const apstring & operator= (const apstring & str); // assign str
. const apstring & operator= (const char * s); // assign s . . B
. const apstring & operator= (char ch); // assign ch

// accessors

int length() const; // number of chars

int find(const apstring & str) const; // index of first occurrence of str

int find(char ch) const; . // index of first occurrence of ch
apstring substr(int pos, int. len) const; // substring of len chars, starting at pos
const char * c¢_str() const; ’ // explicit conversion to char *

// indexing
char operator|[]{(int k) const; // range-checked indexing
char & operator[] (int k); // range-checked indexing

// modifiers
const apstring & operator+= (const apstring & str); // append str
const apstring & operator+= (char ch); // append char

// The following free (non-member) functions operate on strings
// I/0 functions

ostream & operator<< (ostream & os, const apstring & str);
istream & operator>> (istream & 1s, apstring & str);

istream & getline(istream & is, apstring & str);

// comparison operators

bool operator== (const apstring & lhs, const apstring & rhs);
bool operator!= (const apstring & lhs, const apstring & rhs);
bool operator< (const apstring & lhs, const apstring & rhs);
bool operator<= (const apstring & lhs, const apstring & rhs);
bool operator> (const apstring & lhs, const apstring & rhs);
bool operator>= (const apstring & lhs, const apstring & rhs);

// concatenation operator +

apstring operator+ (const apstring & lhs, const apstring & rhs);
apstring operator+ (char ch, const apstring & str):;

apstring operator+ (const apstring & str, chaxr ch);

Quick Reference for apvector and apmatrix -’

template <class itemType>
class apvector

// public member functions

// constructors/destructor

apvector () ; // default constructor (size==0)
apvector (int size); // initial size of vector is size
apvector (int size, const itemType & fillvalue); // all entries == fillvValue
apvector (const apvector & vec); // copy constructor

~apvector () ; // destructor

» - // assignment :
S const apvector & operator= (const apvector & vec);

// accessors
int length{) const; // capacity of vector

// indexing _
itemType & operator[]7lint inﬁex); // indexing with_range checking
const itemType & operator|] (int index) const; // indexing with.range checking

// modifiers
void resize(int newSize); // change size dynamically; can result in losing values

template <class itemType>
class apmatrix

// public member functions

// constructors/destructor

apmatrix(); // default size is 0 x O
apmatrix(int rows, int cols); : // size is rows X cols
apmatrix({int rows, int cols, const itemType & fillValue); // all entries == fillValue
apmatrix{const apmatrix & mat); // copy constructor
~apmatrix(); // destructor

// assignment
const apmatrix & operator = (const apmatrix & rhs);

// accessors
int numrows () const; // number of rows
int numcols() const; // number of columns

// indexing
const apvector<itemType> & operator[] (int k) const; // range-checked indexing
apvector<itemType> & operator[](int k); // range-checked indexing

// modifiers
void resize(int newRows, int newCols); // resizes matrix to newRows x newCols
// (can result in losing values)

Computer Science A

Header File for the BigInt class.*

— -,

#ifndef _BIGINT_H
#define _BIGINT_H

/7

// implements an arbitrary precision integer class

//

// constructors:

//

// BigInt () -- default constructor, value of integers is 0

// BigInt(int n) -~ initialize to value of n (C++ int)

// BigInt (const apstring & s) -- initialize to value specified by s
= - // it i1s an error if s is an invalid integer, e.g., . - -
b // "1234abc567". In this case the bigint value is garbage

//

//

// ***** arithmetic operators:

7/

// all arithmetic operators +, -, * are overloaded both

// in form +=, -=, *= and as binary operators N

!/ : i — -

// multiplication also overloaded for *= int
// e.g., BigInt a *= 3 (mostly to facilitate implementation)

//

// *¥*** Jogical operators:

//

// bool operator == (const BigInt & lhs, const BigInt & rhs)
// bool operator != (const BigInt & 1lhs, const BitInt & rhs)
// bool operator < (const BigInt & 1lhs, const BigInt & rhs)
// bool operator <= (const BigInt & lhs, const BigInt & rhs)
// bool operator > (const BigInt & lhs, const BigInt & rhs)
// bool operator >= (const BigInt & lhs, const BigInt & rhs)
//

// ***** T/0 operators:

7/

// wvoid Print () .

/7 prints value of BigInt (member function)

// ostream & operator << (ostream & os, const BigInt & b)
// stream operator to print value

//

// istream & operator >> (istream & in, const BigInt & b)

// reads whitespace delimited BigInt from input stream in
//

3
S
3

Y
}‘.

#include <iostream.h>)
#include "apstring.h" // for strings
#include "apvector.h" . // for sequence of digits

— -

class BigInt

{
public:
BigInt(); // default constructor, value = 0
BigInt (int) ; // assign an integer value
BigInt (const apstring &); // assign a string
// may need these in alternative implementation
// BigInt{const BigInt &); // copy constructor
// ~BigInt(); - // destructor . .
// const BigInt & operator = (const BigInt &); // assignment operator
// operators: arithmetic, relational
const BigInt & operator += {const BigInt &);
const BigInt & opeyator -= (const BigInt &);
const BigInt & operator *= (const BigInt &);. .
const BigInt & opetrator *= (int num); ; e
apstring ToString() const; // convert to string
int ToInt () const; // convert to int
double ToDouble () const; // convert to double
// facilitate operators ==, <, << without friends
bool Equal (const BigInt & rhs) const;
bool LessThan(const BigInt & rhs) const;
vold Print(ostream & 0s) const;
private:
// other helper functions
bool IsNegative() const; // return true iff number is negative
bool IsPositive() const; // return true 1ff number is positive
int NumDigits () const; // return # digits in number
int GetDigit(int k) const;
void AddSigDhigit (int value);
void ChangeDigit(int k, int value);
void Normalize();
// private state/instance variables
enum Sign{positive,negative};
Sign mySign; // is number positive or negative
apvector<char> myDigits; // stores all digits of .number
int myNumDigits; // stores # of digits of number
Y

- 60 |

// free functions

ostream & operator << (ostream &,
istream & operator >>(istream &,

BigInt operator +(const BigInt &
BigInt operator -(const Biglnt &
BigInt operator *{const BigInt &
BigInt operator *{const BigInt &
BigInt operator *(int num, const

const BigInt
const BigInt
const BigInt
const BiglInt
-const BigInt
const BigInt

bool operator =
bool operator <
bool operator !
bool operator >
bool operator >=
bool operator <=

R R 2R R

(
(
(
(
(
(

#endif // _BIGINT_H not defined

61 |

const BigInt &);

BigInt &) ;

lhs, const BiglInt
lhs, const BigInt
lhs, const BiglInt
lhs, int num);
BigInt & rhs);
lhs, const BigInt
lhs, const RiglInt
lhs, const Biglnt
lhs, const Biglnt
lhs, const BigInt
lhs, const BiglInt

R R

R R R RRR

BigInt::BigIn
BigInt::BigIn

()
t(int num)

Index of functions in the Bigint class

BigInt::BigInt (const apstring & s)
const BigInt & BigInt::operator -=(const BigInt & rhs)
const BigInt & BiglInt::operator +=(const BigInt & rhs)

BigInt operator +{const BigInt & lhs,
BigInt operator -{const BigInt & lhs,
void Bigint::Print(ostream & o0s)
apstring BigInt::ToString()
oInt () const

int BigInt::T
double BigInt

: :ToDouble ()

const

const

const

ostream & operator <<(ostream & out, const BigInt & big)
istream & operator >>(istream & in, BigInt & big)

bool operator ==(const BigInt & lhs, const BigInt & rhs)
bool BigInt::Equal (const BigInt & rhs) const

!={const BigInt &lhs, const BigInt & rhs)
< (const BigInt & lhs, const BigInt & rhs)
LessThan (const BigInt &rhs) const

>(const BigInt & lhs, const BigInt & rhs)
<=(const BigInt & lhs, const BigInt & rhs)
>=(const BigInt & lhs, const BigInt & rhs)

bool operator
bool operator
bool BigInt::
bool operator
bool operator
bool operator
void BigInt::
const BigInt

BigInt operator *(int num,

BigInt operator *{const BigInt & lhs,

int BigInt::N
int BigInt::G
void BigInt:
void BigInt:
bool BigInt:
bool BigInt:

Normalize ()

& BigInt:: operator *=(int num)
BigInt operator *{const BigInt & a, int num)
const BigInt & a)
const BigInt & BigInt::operator *=(const BigInt & rhs)

umDigits{) const
etDigits() const

:ChangeDigit(int k,
:AddSighigit{int value)
:IsNegative ()
:IsPositive()

const
const

int value)

const BRigInt & rhs)
const BigInt & lhs)

const BigInt & rhs)

Computer Science A CaSeStud

Implementation of BigInt &

#include <iostream.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
#include "bigint.h"
#include "apvector.h"”

const int BASE = 10;

// BigInts are implemented using a Vector<char> to store

// the digits of a BigInt
- - // Currently a number like 5,879 is stored as the vector {9,7,8,5} .
. // i.e., the least significant digit is the first digit in the vector;
- // for example, GetDigit(0) returns 9 and getDigit(3) returns 5.

// All operations on digits should be done using private

// helper functions:

/7

// int GetDigit (k) -- return k-th digit

// void ChangeDigit(k,val) -- set k-th digit to val

// void Addsigbigit(val)” -- add new most signific¢ant digit val
// : o

// by performing all ops in terms of these private functions we
// make implementation changes simpler

// I/0 operations are facilitated by the ToString() member function
// which converts a BigInt to its string (ASCII) representation

BigInt::BigInt ()
// postcondition: bigint initialized to 0
mySign(positive),
myDigits(1,’0"),
myNumDigits (1)
{
// all fields initialized in initializer list
} .
BigInt::BigInt (int num)
- // postcondition: bigint initialized to num
g mySign(positive),
myDigits(1l, 0"},
myNumDigits (0)

// check if num is negative, change state and num accordingly

if (num < 0)

{
mySign = negative;
num = -1 * num;

// handle least-significant digit of num (handles num == 0)

AddSigDigit (num % BASE);
num = num / BASE;

// handle remaining digits of num

while (num != 0)

{
AddSigDigit(num % BASE); -
num = num / BASE;

63

BigInt::BigInt (const apstring & s) ¥
// precondition: s consists of digits only, optionally preceded.by + or -
// postcondition: Bigint initialized to integer represented by s

// if s 1s not a well-formed BigInt (e.g., contains non-digit
// characters) then an error message is printed and abort called
: mySign(positive),
myDigits(s.length{),’'0"),
myNumDigits (0)
{
int k;
int limit = 0;
if (s.length() == 0)
{
; myDigits.resize(l);
S AddSigDigit (0); -
. return;
}
if (s[0] == "-")
{
mySign = negative;
limit = 1;
} b -
if (s[0] == '+") -
{
limit = 1;
}
// start at least significant digit
for (k=s.length() - 1; k >= limit; k--)
{
if (! isdigit(sl[k]))
{
cerr << "badly formed BiglInt value = " << s << endl;
abort () ;
}
AddSigDigit(s[kl-"0");
}
Normalize () ;
}

Computer Science A CaseStudy

b const BigInt & BigInt::operator -=(const BigInt & rhs) ¥
- // postcondition: returns value of bigint - rhs after subtragtion
{
int dAiff;

int borrow = 0;

int k;
int len = NumDigits();

if (this == &rhs) // subtracting self?
{
*this = 0; ‘
return *this;
}
R // signs opposite? then lhs - (-rhs) = lhs + rhs
i if (IsNegative() != rhs.IsNegative())
{
*this +=(-1 * rhs);
return *this;
}

// signs are the éame, check which number is larger
// and switch to det larger number "on top" if necesgsary
// since sign can change when subtracting

// examples: 7 - 3 no sign change, 3 - 7 sign changes
// -7 - (-3) no sign change, -3 -(-7) sign changes
if (IsPositive() && (*this) < rhs ||
IsNegative() && (*this) > rhs)
{
*this = rhs - *this;
1f (IsPositive()) mySign = negative;
else mySign = positive; // toggle sign
return *this;
}

// same sign and larger number on top

for(k=0; k < len; k++)
{ .
diff = GetDigit(k) - rhs.GetDigit(k) - borrow;
borrow = 0;
- if (diff < 0)
{

diff += 10;

borrow = 1;
}
ChangeDigit(k,diff);

}
Normalize () ;
return *this;

const BiglInt & BigInt::operator +=(const BigInt & rhs) ¥
// postcondition: returns value of bigint + rhs after addition,
{

int sum;
int carry = 0;

int k;
int len = NumDigits(); // length of larger addend
if (this == &rhs) // to add self, multiply by 2
{
*this *= 2;
return *this;
}
if (rhs == 0) ; // zero is special case ;
{
return *this;
}
if (IsPositive() != rhs.IsPositive()) // signs not the same, subtract
{ . .
*this -= (-1 * .rhs); ; o
return *this; - ’ e
}

// process both numbers until one is exhausted

if (len < rhs.NumDigits{())
{

}
for(k=0; k < len; k++)
{

len = rhs.NumDigits();

sum = GetDigit(k) + rhs.GetDigit(k) + carry;
carry = sum / BASE;
sum = sum % BASE;

if (k < myNumDigits)
{

3

else

ChangeDigit (k, sum) ;

AddSighigit (sum) ;
} .
}
if (carry i= 0)
{
AddSigbhigit{carxry);

return *this;

}

BigInt operator +{const BigInt & lhs, const BigInt & rhs)
// postcondition: returns a bigint whose value is lhs + rhs
{

BigInt result(lhs);

result += rhs;

return result;

}

BigInt operator -(const BigInt & lhs, const BigInt & rhs)
// postcondition: returns a bigint whose wvalue is lhs - rhs
{

BigInt result(lhs);

result -= rhs;

return result;

Computer Science A [[&55

‘e,

§i void BigInt::Print (ostream & os) const
) // postcondition: BigInt inserted onto stream os -

{
}

os << ToString();

apstring BigInt::ToString() const
// postcondition: returns string eguivalent of BigInt
{

int k;

int len = NumbDigits{);

apstring s = "";

if (IsNegative())
- {

}
for (k=len-1; k >= 0; k--)
{

}

retuwrn s;
3 T - -

s += char{’'0’'+GetDigit(k));

int BigInt::ToInt() const
// precondition: INT_MIN <= self <= INT_MAX
// postcondition: returns int equivalent of self
{
int result = 0;
int k;
if (INT_MAX < *this) return INT MAX;
if (*this < INT_MIN) return INT_MIN;

for (k=NumDigits{)-1; k >= 0; k--)
{
result = result * 10 + GetDigit(k);
}
if (IsNegative())
{

}

return result;

result *= -1;

}

double BigInt::ToDouble() const
// precondition: DBL_MIN <= self <= DLB_MAX
- // postcondition: returns double equivalent of self
{
double result = 0.0;
int k;
for (k=NumDigits()-1; k >= 0; k--)
{
result = result * 10 + GetDigit(k);
} .
if (IsNegative())
{

}

return result;

result *= -1;

67 |

ostream & operator <<(ostream & out, const BigInt & big)
// postcondition: big inserted onto stream out
{ .

big.Print{out);

return out;

}

istream & operator >> (istream & in, BigInt & big)
// postcondition: big extracted from in, must be whitespace delimited
{

apstring s;

in >> s;

big = BigInt(s);

return in;

}

bool operator == {const BigInt & lhs, const BigInt & rhs)
// postcondition: returns true if lhs == rhs, else returns false
{
return lhs.Equal (rhs);
}

bool BigInt::Equal(const BigInt & rhs) const) =~
// postcondition: returns true if self == rhs, else retu¥ns false

{

if (NumDigits() != rhs.NumDigits() || IsNegative() != rhs.IsNegative())

{

return false;

i
// assert: same sign, same number of digits;

int k;
int len = NumDigits();
for(k=0; k < len; k++)
{
if (GetDigit(k) != rhs.GetDigit(k)) return false;
}

return true;

3

bool operator != (const BigInt & lhs, const BigInt & rhs)
// postcondition: returns true if lhs != rhs, else returns false
{ ‘

return ! (lhs == rhs);

}

bool operator < (const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs < rhs, else returns false
{

return lhs.LessThan(rhs);

}

Computer Science A [[EXTETHIN

bool BigInt::LessThan(const BigInt & rhs) const
// postcondition: return true if self < rhs, else returns—false

{
// 1f signs aren’t equal, self < rhs only if self is negative
if (IsNegative() != rhs.IsNegative())
{

return IsNegative() ;

}
// 1if # digits aren’t the same must check # digits and sign,

if (NumDigits() != rhs.NumDigits{))
{

return (NumDigits()

(NumDigits ()

rhs . NumDigits () && IsPositive() ||

<)
> rhs.NumDigits () && IsNegative()); -

}

// assert: # digits same, signs the same

int k;
int len = NumDigilts();

for (k=len-1; k >= 0; k--) .
{
1f (GetDigit (k) < rhs.GetDigit(k)) return IsPositive();
if (GetDigit(k) > rhs.GetDigit(k)) return IsNegativel();
}

return false; // self == rhs
}

bool operator > {(const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs > rhs, else returns false

{
return rhs < lhs;

}

bool operator <= (const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs <= rhs, else returns false

{

return lhs == rhs || lhs < rhs;
}

bool operator >= (const BigInt & lhs, const BigInt & rhs)

// postcondition: return true if lhs >= rhs, else returns false
g

1

return lhs == rhs || lhs > rhs;

}

void Biglnt::Normalize()

// postcondition: all leading zeros removed

{
int k;
int len = NumDigits(); -
for(k=len-1; k >= 0; k--) // find a non-zero digit
{

1if (GetDigit(k) != 0) break;
myNumDigits—--; _ // "chop" off zeros

1f (k < 0) // all zeros

myNumDigits = 1;
mySign = positive;

const BigInt & BigInt::operator *=(int num)

// postcondition:
{
int carry = 0;
int product;
int k;
int len = NumDigits();

if (0 == num)

{
*this = 0;
return *this;

}

if (BASE < num|| num < 0)
: .
*this *= BigInt (num) ;
return *this;

}

if (1 == num)
{ - .
return *this;-

}

for(k=0;
{

k < len; k++)

product = num * GetDigit (k)
carry = product/BASE;
ChangeDigit (k, product

}

while (carry !'= 0)

{

returns num * value of BigInt after multTIplication

// product of num and one digit + carry

// treat zero as special case and stop

// handle pre-condition failure

// treat one as special case, no work

// once for each digit
+ carry;

BASE) ;

// carry all digits

AddSigDhigit{carry % BASE);

carry /= BASE;
}

return *this;

BigInt operator *(const BigInt & a,
returns a * num

// postcondition:
{
BigInt result(a);
result *= num;
return result;

}

BigInt operator *(int num,
// postcondition:

{
BigInt result(a);
result *= num;
return result;

}

int num)

const BigInt & a)
returns num * a

70

Computer Science A

const BigInt & BiglInt::operator *=(const BigInt & rhs)
// postcondition: returns value of bigint * rhs after multiplitation
(.

// uses standard "grade school method" for multiplying

if (IsNegative() != rhs.IsNegative())
{
mySign = negative;
}
else
{
mySign = positive;
}
BigInt self(*this); // copy of self
BigInt sum{0) ; // to accumulate sum)
int k;
int len = rhs.NumDigits{); // # digits in multiplier
for(k=0; k < len; k++)
{
sum += self * rhs:GetDigit(k); // k-th digit * self
self *= 10; T // add a zere
} : e
*this = sum;

return *this;

}

BigInt operator *{const BigInt & lhs, const BigiInt & rhs)
// postcondition: returns a bigint whose value is lhs * rhs
{

BigInt result(lhs);

result *= rhs;

return result;

}
int BigInt::NumDigits{) const
// postcondition: returns # digits in BigInt

{
}

return myNumDigits;

int BigInt::GetDigit(int k) const
// precondition: 0 <= k < NumDigits{()
// postcondition: returns k-th digit

// (0 if precondition is false)
// Note: O0th digit is least significant digit
{ 1f (0 <= k && k < NumbDigits{())

: return myDigits{k] - '0";

ieturn 0;

}

void BigInt::ChangeDigit{int k, int value)
// precondition: 0 <= k < NumDigits()
// postcondition: k-th digit changed to value

// Note: Oth digit is least significant digit
{
if (0 <= k && k < NumbDigits())
{
myDigits[k] = char(’0’ + value);
else)
{
cerr << "error changeDigit " << k << " " << myNumDigits << endl;
}

71

void BigInt::AddSigDigit{int value) _ :
// postcondition: value added to BigInt as most significant digit

// Note: Oth digit is least significant digit
{ 1if (myNumDigits >= myDigits:length())
: myDigits.resize(myDigits.length() * 2);
;yDigits[myNumDigits] = char{'0’ + value);
myNumDigits++;

}

bool BiglInt::IsNegative() const

// postcondition: returns true iff BigInt is negative

{ . .
= - © return mySign == negative;

}

bool BigInt::IsPositive() const
// postcondition: returns true i1ff BigInt is positive

{
return mySign =3 positive;

} T ‘

Computer Science A [Saii[|

e,

. COMPUTER SCIENCE A
SECTION II
Time—1 hour and 45 minutes
Number of qhestions——4
Percent of total grade—50

Some questions in the free-response section require you to write program segments. These are to be written
in C++.

The questions are printed in this booklet and on the green insert. You are to use the green insert oflly to

organize your responses and for scratchwork, but you must write all your answers in the pink booklet. Write

your answers in pencil only. Be sure to write CLEARLY and LEGIBLY. If you make an error, you may save
= time by crossing it out rather than trying to erase it. All questions are given equal weight. Credit for partial
T solutions will be given. Do not spend too much time on any one problem.

When you are told to begin, open your booklet, carefully tear out the green insert, and start to work.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.W

Copyright © 1999 College Entrance Examination Board and Educational Testing Service. All rights reserved.

COMPUTER SCIENCE A
_ SECTION IT
Time—1 hour and 45 minutes
Number of questions—4
Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN C++.

Note: Assume that the standard hibraries (iostream.h, fstream.h, math.h, etc.) and the AP C++ classes
are included in any program that uses a program segment you write. If other classes are to be included, that
information will be specified in individual questions. A Quick Reference to the AP C++ classes is included in the
case study insert. ‘ - .

74

:

Computer Science A

1. Assume that student records are implemented using the following declaration. -

struct StudentInfo

{
apstring name;
int creditHours;
double gradePoints;
double GPA;

}:

(a) Write function ComputeGPA, as started below. ComputeGPA should fill in the GPA data member
for the first numStudents records in its apvector parameter roster. A student’s GPA (grade
point average) is computed by dividing gradePoints by creditHours. The GPA for a student with
0 credit hours should be set to O. . .
Complete function ComputeGPA below. Assume that ComputeGPA is called only with parameters that
satisfy its precondition.

void ComputeGPA (apvector<StudentInfo> & roster, int numStudents)
// precondition: roster contains numStudents records, __

// 0 < numStudents £ roster.length(), it which the

// name, creditHours and gradePoints data members

// have been initialized.

// postcondition: The GPA data member for the first numStudents records
// in roster has been calculated.

(b) Write function IsSenior, as started below. IsSenior should return true if-the given student has
at least 125 credit hours and has a GPA of at least 2.0; otherwise, IsSenior shouldreturn false.

For example:

student Result of the call IsSenior (student)
name creditHours gradePoints GPA
King 45 171 3.8 false (notenough chredit hours)
Norton 128 448 35 true

\ Solo 125 | 350 2.8 true
Kramden 150 150 1.0 false (GPA too low)

Complete function IsSenior below.

PO

bool IsSenior (const StudentInfo & student)
o // postcondition: returns true if this student’'s credit hours = 125
i // and GPA 2 2.0; otherwise, returns false

| GO/ON TO THE NEXT PAGE

Computer Science A

(c) Write function FillSeniorList, asstarted below. FillSeniorList determinés which students in
the array roster are seniors and copies those students’ records to the array seniofs. It should also
set the value of parameter numSeniors to be the number of seniors in the array seniors.

In writing FillSeniorList, you may call function IsSenior specified in part (b). Assume that
IsSenior works as specified, regardless of what you wrote in part (b). ‘

Complete function FillSeniorList below. Assume that FillSeniorList iscalled only with
parameters that satisfy its precondition.

void FillSeniorList (const apvector<StudentInfo> & roster,
int numStudents, apvector<StudentInfo> & seniors,
int & numSeniors)

// precondition: roster contains numStudents records,

!/ 0 < numStudents £ roster.length(),
/7 and seniors 1is large enough to hold all of
// the seniors’ records

560 0N TO THE NEXT PAGE

2.) &

(a) Write function WordIndex, as started below. The array wordList contains numWords strings
in alphabetical order. If word isalready in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in
wordList that comes after word in alphabetical order; it should return numWords if word
comes after all of the strings in wordList in alphabetical order.

For example, assume that array wordList is as follows:

0 1 2 3
[" applell |rberry" "pear" Ilquince‘ll
Function Call Value Returned
WordIndex ("air", wordList, 4)

(
WordIndex ("apple”, wordList, 4)
WordIndex ("orange", wordList, 4)
WordIndex ("raspberry“, wordList, 4)

B NO O
!

Complete function WordIndex below. Assume that WordIndex is called only with parameters that
satisfy its precondition.

int WordIndex(const apstring & word,

const apvector<apstring> & wordList, int numWords)
// precondition: wordList contains numWords strings in alphabetical
// order, 0 € numWords < wordList.length()

Computer Science A

(b) Write function InsertInOrder,- as started below. The array wordList contaips; numWords
strings in alphabetical order. If the string word is already in wordList, InsertInOrder should
not change any of its parameters. Otherwise, it should insert word into wordList in alphabetical order
(i.e., all values greater than word should be moved one place to the right to make room for word), and
it should also increment numWords by 1. Assume that wordList.length() is greater than
numWords.

In the examples below, numWords = 3 before the following call is made.

InsertInOrder ("pear", wordList, numWords)

Before the call After the call
wordList wordList numiWords
" appleu nberryu " quinceu " applen nberry [npear" " quinceu 4
" appleu nberryu npearn " appleu uberryn "pear" 3
uappleu ufigu "peaéh" uappleu ufign npeachn npear:L 4
"quince" "raisin" "tart”’ "pear" "quince" "raisin" "tart" 4

In writing InsertInOrder, you may include calls to function WordIndex specified in part (a).
Assume that WordIndex works as specified, regardless of what you wrote in part (a).

Complete function InsertInOrder below. Assume that InsertInOrder is called only with
parameters that satisfy its precondition.

void InsertInOrder (const apstring & word,
apvector <apstring> & wordList, int & numWords)
// precondition: wordList contains numWords strings in alphabetical

// order, 0 £ numWords < wordList.length()

// postcondition: 1f word was already in wordList, then wordList and
// numiWords are unchanged;

// otherwise, word has been inserted into wordList in
// sorted order, and numWords has been incremented by 1

0 ON TO THE NEXT PAGE

79

3. This question involves reasoning about the code from the Large Integer case study. A Topy of the code is
provided as part of this examination. o

(a) Write anew BigInt member function Div2, as started below. Div2 should change the value of
the BigInt to be the original value divided by 2 (integer division). Assume the BigInt is greater than
or equal to 0. One algorithm for implementing Div2 is:

]. Initialize a variable carryDown to 0.

2. For each digit, d, starting with the most significant digit,

2.1 replace that digit with (d / 2) + carryDown
= 2.2 let carryDown be (d % 2) * 5) - -
3. Normalize the result

Complete member function Div2 below.

void BigInt::Div2() .) ~
// precondition: BigInt = 0 e

Computer Science A

(b) Write function DivPos, as started below. DivPos returns the quotient of the integer division of
dividend by divisor. Assume that dividend and divisor are both positfve values of type

BigInt.

¥

For example, assume that bigNuml and bigNuer are positive values of type BigInt:

bigNuml bigNum2 DivPos (bigNuml, bigNum2)
18 9 2
17 2 8
- 8714 2178 . 4 ‘ X
- 9990 999 10

There are many ways to implement division; however, you must use a binary search algorithm to find the
quotient of dividend divided by divisox in this problem. You will receive no credit on this part if
you do not use a binary sedrch algorithm.

P

One algorithm for implementing division using binary search is as follows:

1. Initialize low to 0 and high to dividend.
2. For each iteration,

2.1 compute mid = (low + high + 1)
2.2 divide mid by 2

23 if mid * divisor islargerthan dividend (mid istoo large to be the quotient) then set
high equalto mid - 1lelse set low equalto mid.

3. When low == high the search terminates, and you should return low.
In writing function DivPos, you may call function Div2 specified in part (a). Assume that Div2

works as specified, regardless of what you wrote in part (a). You will receive no credit on this part if you
do not use a binary search algorithm.

Complete function DivPos below. Assume that DivPos is called only with parameters that satisfy its
precondition.

BigInt DivPos (const BigInt & dividend, const BigInt & divisor)
// precondition: dividend > 0, divisor > 0

4. A patchwork quilt can be made by sewing together many blocks, all of the same size. Edch individual block is
made up of a number of small squares cut from fabric. A block can be represented astatwo-dimensional array of
nonblank characters, each of which stands for one small square of fabric. The entire quilt can also be represented
as a two-dimensional array of completed blocks. The example below shows an array that represents a quilt made
of 9 blocks (in 3 rows and 3 columns). Each block contains 20 small squares (of 4 rows by 5 columns). The quilt
uses 2 different fabric squares, represented by the characters ‘x’ and ’.’. We consider only quilts where the
main block alternates with the same block flipped upside down (i.e., reflected about a horizontal line through the
block’s center), as in the example below.

x X|..X..|X X
XX L .XL L] oXLX.
bie LX.X. b'q
= b4 X...X X -
x X...X b4
L.X X.¥%.|..X
LX.X XL | XX
X...X|..X..|x...%
- Xo..X|..X.. |%X...%
X.X.|..xX. .X.X L
x .X.X x
X X...X X

Consider the problem of storing and displaying information about a quilt.

The class Quilt, whose declaration is shown below, is used to keep track of the blocks for an entire quilt.
Since the pattern is based on one block, we only store that block and the number of rows and columns of blocks.
For the example shown above, we would store the upper left 4 x 5 block, 3 for the number of rows of blocks in
the quilt and 3 for the number of columns of blocks in the quilt.

class Quilt

{
public:
Quilt(istream & inFile, int rowsOfBlocks, int colsOfBlocks);
// constructor, given number of blocks in each row and column
apmatrix<char> QuiltToMat () ;
// returns a matrix with the entire gquilt stored in it
private:
apmatrix<char> myBlock; // stores pattern for one block
int myRowsOfBlocks; // number of rows of blocks in the guilt
int myColsOfBlocks; // number of columns of blocks in the quilt
void PlaceBRlock (int startRow, int startCol,
apmatrix<char> & gmat);
void PlaceFlipped(int startRow, int startCol,
apmatrix<char> & gmat);
1

GO ON TO THE NEXT PAGE

82

Computer Science A [Rat

(a) Write the code for the constructor that initializes a quilt, as started below. The constructof reads the block
pattern for the main block from a file represented by the parameter inFile. You may assume the file is
open and that the file contains the number of rows followed by the number of columns for the block,
followed by the characters representing the pattern. For example, the file pattern, which contains the
pattern for the first block in the quilt shown above, would look like this:

= The constructor also sets the number of rows and columns of blocks which make up the entire quilt in the
T initializer list. . ~

Complete the constructor below. Assume that the constructor is called only with parameters that satisfy its
precondition.

Quilt::Quilt{istream & ihFile, int rowsOfBlocks, int colsOfBlocks)

. : myBlock (0, 0), myRowsOfBlocks (rowsOfBlocks), -
myColsOfBlocks (colsOfBlocks)

// precondition: inFile is open, rowsOfBlocks > 0, colsOfBlocks > 0

// postcondition: myRowsOfBlocks and myColsOfBlocks are initialized to

!/ the number of rows and columns of blocks that make up
/7 the quilt; myBlock has been resized and

// initialized to the block pattern from the

// stream inFile.

(b) Write the private member function PlaceFlipped, as started below. PlaceFlibped is intended to

place a flipped (upside-down) version of the block into the matrix gmat with the flipped block’s upper left
corner located at the startRow, startCol positionin gmat.

For example, if quilt Q contains the block shown i in part (a) and if M is a matrix large enough to hold the
characters in the whole quilt, then the call

Q.PlaceFlipped(4, 10, M)
would place the flipped version of Q’s quilt block into matrix M as the third block in the second row of

quilt blocks. This is the block whose upper-left corner is at position M[4] [10]. In the diagram below, the
upper-left corner of the flipped block being placed into M is circled.

X X|..x..|x x
X.X XL L] LXK
.X. X.X. X
.X.
- '
S XL T
.X.X
X...X
X...X
.X.X ..
X X.X. X
X X...X x

You may adapt the code of the private member function PlaceBlock, given below, which places

the block (not inverted) into the matrix qmat with the block’s upper left corner located at the
startRow, startCol position.

void Quilt::PlaceBlock(int startRow, int startCol,
apmatrix<char> & gmat)
// precondition: startRow = 0; startCol = 0;

/7 startRow + myBlock.numrows ()} £ gmat.numrows () ;
// startCol + myBlock.numcols () < gmat.numcols();
// postcondition: myBlock has been copied into the matrix
// gmat with its upper-left corner at the position
i startRow, startCol
{
int r, c¢;
for (r = 0; r < myBlock.numrows(); r++)
{
for (¢ = 0; ¢ < myBlock.numcols(); c++)
{

gmat [startRow + r][startCol + ¢] = myBlockl[r]lcl;
}
}
}

Computer Science A Set:tlon i

Complete the member function PlaceFlipped below. Assume that PlaceFlipped’ mcaHaioMy
with parameters that satisfy its precondition. =

void Quilt::PlaceFlipped(int startRow, int startCol,
apmatrix<char> & gmat)
// precondition: startRow = 0; startCol = 0;

!/ startRow + myBlock.numrows () < gmat.numrows();
// startCol + myBlock.numcols () < gmat.numcols();
// postcondition: a flipped version of myBlock has been copied into the
// matrix gmat with its upper-left corner at the position
// startRow, startCol
{
int r, c;
for (r = 0; r < nmyBlock.numrows{(); r++)
{
for (¢ = 0; ¢ < myBlock.numcols{); c++)
{
} -
}
}

(c) Write the member function QuiltToMat, as started below. QuiltToMat returns a matrix representing
the whole quilt in such a way that the main block alternates with the flipped version of the main block, as
shown in the original example. If Q represents the example quilt, then the call Q.QuiltToMat ()
would return a matrix of characters with the given block placed starting with the upper-left corner at position
0, 0; the flipped block placed with its upper-left corner at position 0, 5; the given block placed with its upper-
left corner at position 0, 10; the flipped block placed with its upper-left corner at position 4, 0, and so on.

In writing QuiltToMat, you may call functions PlaceBlock and PlaceFlipped specified in
part (b). Assume that PlaceBlock and PlaceFlipped work as specified, regardless of what you
wrote in part (b).

Complete the member function QuiltToMat below.

apmatrix<char> Quilt::QuiltToMat ()

END OF EXAMINATION

86

Computer Science AB

o
.7

- COMPUTER SCIENCE AB

= -

CALCULATORS, REFERENCE MATERIALS OR OTHER AIDS ARE NOT TO BE USED DURING THE
EXAMINATION.

Three hours are allotted for this examination: 1 hour and 15 minutes for Section I, which consists of 40 multiple-choice
questions, and 1 hour and 45 minutes for Section II, which consists of 4 free-response questions. In determining your
grade, the two sections are given equal weight. Section I is printed in this examination booklet. Section II is printed in a
separate booklet. In addition, following Section I there are 4 survey questions to be answered in 2 minutes. .

SECTIONI

Time — 1 hour and 15 minutes
Number of questions — 40
Percent of total grade — 50

Section [of this examination contains 40 multiple-choice questions. Therefore, please be careful to fill
in only the ovals that are preceded by numbers 1 through 40 on your answer sheet when answering the
examination questions. Also, please be careful to fill in the ovals preceded by numbers 41 through 44
when answering the survey questions.;

General Instructions

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE INSTRUCTED TO DO SO.

INDICATE ALL YOUR ANSWERS TO QUESTIONS IN SECTION I ON THE SEPARATE ANSWER SHEET.
No credit will be given for anything written in this examination booklet, but you may use the booklet for notes or
scratchwork. After you have decided which of the suggested answers is best, COMPLETELY fill in the corresponding
oval on the answer sheet. Give only one answer to each question. If you change an answer, be sure that the previous
mark is erased completely.

Sample Answer

Example:
Y XOIORGD]

Chicago is a

(A) state
(B) city
(C) country

(D) continent
(E) village

Many candidates wonder whether or not to guess the answer to questions about which they are not certain. In this

section of the examination, as a correction for haphazard guessing, one-fourth of the number of questions you answer
incorrectly will be subtracted from the number of questions you answer correctly. It is improbable, therefore, that mere
guessing will improve your score significantly; it may even lower your score, and it does take time. If, however, you are
not sure of the correct answer but have some knowledge of the question and are able to eliminate one or more of the
answer choices as wrong, your chance of getting the right answer is improved, and it may be to your advantage to answer
such a question.

Use your time effectively, working as rapidly as you can without losing accuracy. Do not spend too much time on
questions that are too difficult. Go on to other questions and come back to the difficult ones later if you have time. It is
not expected that everyone will be able to answer all the multiple-choice questions.

Copyright © 1999 College Entrance Examination Board and Educational Testing Service. All rights reserved.
Certain test materials are copyrighted solely in the name of ETS.

. 87

COMPUTER SCIENCE AB
SECTION I
Time—1 hour and 15 minutes
Number of questions—40
Percent of total grade—50
Directions: Determine the answer to each of the following questions or incomplete statements, using the available
space for any necessary scratchwork. Then decide which is the best of the choices given and fill in the corresponding

oval on the answer sheet. No credit will be given for anything written in the examination booklet. Do not spend too
much time on any one problem.

Note: Assume that the standard libraries (e.g., iostream.h, fstream.h, math.h, etc.)and the AP C++
classes are included in any programs that use the code segments provided in individual questions. A Quick
Reference to the AP C++ classes is provided on pages 45-49.

USE THIS SPACE FOR SCRATCHWORK.

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science AB

. USE THIS SPACE FOR SCRATCHWORK.

1. A “strictly” binary tree is a binary tree in which every node
has either O or 2 children (i.e., no node has exactly 1 child).
How many nodes are in a strictly binary tree that has
8 leaves?

(A 7

B) 8

(C) 15

(D) 16

(E) The answer cannot be determined from the information
- given.

Unauthorized copying or reusing
any part of this page is illegal.

. 89

. USE THIS SPACE FOR SCRATCHWORK.
2. Consider the following declarations and code segment.

struct ListNode
{

int data;
ListNode * next;

1

ListNode * L1;
ListNode * L2;

= L1 = new ListNode; - ‘ -
h L2 = new ListNode;

Ll->next = L2;

Ll->next-»next = L2;

Which of the following diagrams best depicts the data
structure created when the code segment is executed? : o~

L1—s .
(A) o~
L2
(B) Ll— A
L2
L1l—s N
(®) >
C)
L1
(D) 12— At :
L2
(E) Ll—s A -

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science AB ;{Se'ctri'o'n‘;

USE THIS SPACE FOR SCRATCHWORK.

= -

3. Consider the following definitions.
const int N = <some positive integer>‘;
apmatrix<double> A(N,N), B(N,N), C(N,N);
Consider the following code segment.

int row, col, k;
for (row = 0; row < N; row++)
{
for (col = 0; col < N; -col++)
{
Clrow] [col]l = 0.
for (k = 0; k <
{

0;
N; k++)

Clrow] [col]l += Alrow][k] * Blk][col]l;
} - S

} vf -) —
} ;

Of the following, which best describes the running time of
the code segment?

(A) O(1)

(B) O(N)

(© ON*)

(D) O(N?)

(B) ON)

GO(ON TO THE NEXT PAGE

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPACE FOR SCRATCHWORK.

—

4. A racehorse breeder owns 100 horses, identified by ID
numbers from 0 to 99. Each year there are 50 races. Consider
designing a data structure to keep track of the number of
races won by each horse in the current year. Two different
methods are described below.

Method 1. Use a one-dimensional array of integers:
the value of the kth element of the array is
the number of races won by the breeder’s
horse whose ID number is k.

Method 2. Use a linked list of integers: each list
element corresponds to one race won by
one of the breeder’s horses and contains
that horse’s ID number.

Which of the following is true? | . .

(A) If Method 1 is used, the size of the array should be 50.

(B) If the breeder’s horses win every race, then Method 1
cannot be used.

(C) If the breeder’s horses win every race, then Method 2
cannot be used.

(D) If the breeder’s horses win no races, then Method 1 is
more storage-efficient than Method 2.

(E) If the breeder’s horses win no races, then Method 2 is
more storage-efficient than Method 1.

' GO ON TO THE NEXT PAGE
LUnauthorized copying or reusing e G
any part of this page is illegal.

82

Computer Science AB Sect.on

‘ USE THIS SPACE FOR SCRATCHWORK.

— -

5. Consider the following declarations.

apstack<char> §S;
apgueue<char> Q;

Assume that Q is initially empty and that S initially
contains

WXY 2

T

. top

in that order, with W at the top of the stack.
Consider the following code segment.
char item; -

while (!S.isEmpty()) T) =
{

S.pop (item) ;
Q.engqueue (item) ;
}
while (!Q.isEmpty())
{
O.degueue{item) ;
S.push (item) ;
}

Which of the following best describes queue Q and stack S
after the code segment executes?

(A) Queue Q isempty and stack S contains W, X, Y,
Z in that order, with W at the top of the stack.

(B) Queue Q isempty and stack S contains Z, Y, X,
W in that order, with Z at the top of the stack.

(C) Queue Q contains W, X, Y, Z, inthatorder, with
W at the front of the queue, and stack S is empty.

(D) Queue Q contains W, X, Y, Z, inthatorder, with

" W at the front of the queue, and stack S contains Z,

Y, X, W inthatorder, with Z at the top of the
stack.

(E) Queue Q contains W, X, Y, Z in thatorder, with
W at the front of the queue, and stack S contains W,
X, Y, Z inthatorder, with W at the top of the
stack.

Unauthorized copying or reusing
any part of this page is illegal.

6. Consider the following function.

int Mystery{(int n)

{
if (n <= 1)
{
return 0;
}
else
{
return (n + Mystery(n - 1)
}
}
What value is returned by the call Mystery (4)
(A) O
(B) 4 -
© 6
D) 9
(E) 11

Unauthorized copying or reusing
any part of this page is illegal.

+ Mystery(n

?

e

USE THIS SPACE FOR SCRATCHWORK.

— .,

Computer Science AB |

USE THIS SPACE FORSCRATCHWORK.

— -,

7. Consider the following definition of a stack of integers.

class IntStack

{
public:
IntStack () ; // constructor, initializes to empty
, // stack
T void Push{int x); // pushes x onto the stack
int Pop () ; // removes and returns the top element
// from the stack
bool isEmpty () const; // returns true if the stack is
- . // empty; otherwise, returns false
' <designation>:
apvector<int> myStack; // stack items
int myCount; // number of items on the stack
Y

Which of the following is the best choicé for <designation> . -
and the best reason for that choice? - -

(A) <designation> should be private. Otherwise,
the client program will not be able to modify the stack
using member functions Push and Pop.

(B) <designation> should be private so thatthe
stack can be modified only by using member functions
such as Push and Pop, thereby preserving the
principle of information hiding.

(C) <designation> should be public because the
programmer of a client program should know how the
IntStack class has been implemented.

(D) <designation> should be public so
that a client program can include code such as
1f (myCount == 0) todetermine whether
the stack is empty, thereby preserving the principle
of maximum flexibility.

(E) <designation> should be public. Otherwise,
a client program will not be able to modify the contents

. of the stack in any way.

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPACE+OR SCRATCHWORK.

- -

8. Consider the binary search tree shown below.

This tree could be the result of inserting letters into an empty
binary search tree in any of the following orders EXCEPT

(A HCEWKPQ . :

(B) HCEWPKQ SO “ .
(C) HWPCEQK '

(D) HWPKCEQ

(E) HWPQCKE

Unauthorized copying or reusing
any part of this page is illegal.

26

-

Questions 9-10 refer to the following information.

An office building is 50 stories high and each story contains
ten offices. Some of the offices have no computers, others
have one or more computers. Consider the problem of
representing the locations of the computers. Three alternative
data structures to represent this information are defined

below.

Method .

Method 2.

Method 3.

Use a two-dimensional array A of integer
values indexed by story number and office
number. The number of computers on story
j in office k is stored in location
Al{jl[k].

Use a linked list of structures. Each
structure has three data members: the story
number and the office number of an office
and the number of computers in the office.
Offices without a computer would not
appear in this list.

Use a linked list of structures. Each
structure has two data members: the story
number and the office number of an office
that has a computer. If an office has
multiple computers, that office will appear
as many times in the list as it has
computers. Offices without a computer
would not appear in this list.

Unauthorized copying or reusing
any part of this page is illegal.

97

Computer Science AB Sectuon -

USE THIS SPACE FOR SCRATCHWORK.

—

9. Which of the following statements about the relative space
requirements of the three methods is true?

(A) When every office in the building has five computers,
Method 2 requires more space than does Method 3,
which requires more space than does Method 1.

(B) When every office in the building has five computers,
Method 3 requires more space than does Method 2,
which requires more space than does Method 1.

(C) When no office in the building has a computer,
Method 1 requires more space than does Method 3,
which requires more space than does Method 2.

(D) When no office in the building has a computer,
Method 3 requires more space than does Method 2,
which requires more space than does Method 1.

(E) All three methods require the same amount of space
regardless of how many computers are currently in the
building. o

10. Which of the following operations can be performed more
efficiently using Method 1 than using either of the other two
methods?

1. Determine whether a particular office currently has
a computer (given the story number and the office
number of the office).

II. Move a computer from one office to another (given
the story number and the office number of each of the
two offices).

III. Determine the total number of computers currently
in the building.

(A) T only

(B) Il only

(C) Il only

(D) Tand II only
(E) 1,11, and III

Unauthorized copying or reusing
any part of this page is illegal.

98

USE THIS SPACE FOR SCRATCHWORK.

— -

GO ON TO THE NEXT PAGE

Section

Computer Science AB

USE THIS SPACE fO"R SCRATCHWORK.

11. Assume that binary trees are implemented using the

following declaration and that Height is a function that
operates on binary trees.

struct TreeNode

{
int info;
TreeNode * left;
TreeNode * right;

¥

int Height (TreeNode * T);
// postcondition: returns the length of the longest path

// from the root to a leaf, or 0 if the tree
// is empty

A “full complete binary tree” is one in-which every level of .)
the tree is completely filled, i.e., every'nonleaf node has two -
children and both children are full complete binary trees of

equal size. (An empty tree is considered a full complete tree.)

For example, T1 below is a full complete binary tree but T2
below is not.

; C \Oé O &ig\){?@

The height of an empty tree is O; the height of a nonempty
tree is the number of nodes on the longest path from the root
to a leaf.

Unauthorized copying or reusing
any part of this page is illegal.

‘

89

USE THIS SPACE FOR SCRATCHWORK.

Consider the following incomplete function.

bool IsFullComplete (TreeNode * T)
// postcondition: returns true if tree T is a full complete
// binary tree; otherwise, returns false

{
if (T == NULL)
{

return true;
}

. else . . .

{

<statement>
}
}

Assume that function Height works as specified. Which

of the following can be used to replacé <statement> in) -
function IsFullComplete sothat IsFullComplete

will satisfy its postcondition?

(A) return (IsFullComplete(T->left) && IsFullComplete(T->right));
(B) return (IsFullComplete(T->left) || IsFullComplete(T->right));

(C) return ((IsFullComplete(T->left) && IsFullComplete(T->right)) &&
(Height (T->left) && Height (T->right)));

(D) return ((IsFullComplete(T->left) && IsFullComplete(T->right)) &&
{Height (T->left) == Height (T->right))});

(E) return ((IsFullComplete(T->left) && IsFullComplete (T->right)) ||
(Height (T->left) == Height(T->right)));

Unauthorized copying or reusing
any part of this page is illegal.

100

A sparse array is one that contains mostly zeroes. If a sparse
array is very large, there may not be enough computer
memory to store the entire array; instead, a special
SparseArray data structure which stores only the
nonzero values can be used. Consider the following two
designs for the SparseArray data structure.

Design 1. A SparseArray is represented by using a
linked list in which each node contains the index
and the value of one nonzero array entry. The
linked list is maintained in sorted order by
indices.

Design 2. A SparseArray isrepresented by using a
binary search tree in which each node contains
the index and the value of‘one nonzero array
entry. The binary search tree is organized
according to the indices stored in the tree nodes;
that is, the index at node p is greater than all of
the indices in p’s left subtree and is less than all
of the indices in p’s right subtree.

Assume that the nonzero values of the sparse array
are inserted in increasing order of their index into the
SparselArray data structure.

Which of the following correctly describes an advantage
of Design 2 over Design 1 ?

(A) In general, Design 2 will take less time than Design |
to initialize an array that contains all zeroes.

(B) In general, Design 2 will take less time than Design 1
to access a particular element with index k,

(C) Design 2 will require less space than Design 1 to
represent an array that contains all zeroes.

(D) Design 2 will require less space than Design 1 to
represent an array that contains some nonzero entries.

(E) Design 2 has no advantage over Design 1.

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science AB Sectmn 1

USE THIS SPACE FOR SCRATCHWORK.

— -

00N TO THE NEXT PAGE

\ i USE THIS SPQCE"FOR SCRATCHWORK.

13. Which of the following properties of a C++ program
CANNOT always be checked at compile time?

(A) No NULL pointer is ever dereferenced.

(B) No function is called with the wrong number of
arguments.

(C) Every "{" hasamatching "}".

(D) Every nonvoid function includes a return statement.

(E) Private members of a class are accessed only by member
functions of that class.

Unauthorized copying or reusing
any part of this page is illegal.

H
H

|
102 |

Computer Science AB

USE THIS SPACE FOR SCRATCHWORK.

—

14. Consider using quicksort to sort an array of integers into
ascending order. Recall that quicksort first partitions the
array about an element and then recursively sorts the two
partitions. One way of choosing the partition value is to
always use the left-most (first) element in the subarray
being partitioned.

Consider what happens when the version of quicksort
defined above is applied to each of the following arrays:

1. A list whose values are in ascending order
= 2. A list whose values are in descending order
A 3. A list whose values are in random order

Of the following, which best characterizes the expected
runtime of quicksort when applied to the three lists defined
above?

(A) The expected runtime of quicksort will be the same for . -
all three lists. - ‘
(B) The expected runtime of quicksort for List 1 and List 2
will be the same and will be slower than the runtime of
quicksort for List 3.
(C) The expected runtime of quicksort for List | and List 2
will be the same and will be faster than the runtime of
quicksort for List 3.
(D) The expected runtime of quicksort for List 2 and List 3
will be the same and will be slower than the runtime of
quicksort for List 1.
(E) The expected runtime of quicksort for List 2 and List 3
will be the same and will be faster than the runtime of
quicksort for List I.

Unauthorized copying or reusing
any part of this page is illegal.

‘ 103

USE THIS SPACE FOR SCRATCHWORK.

15. The following integers are read in the order indicated and
inserted into a binary search tree with smaller elements
inserted in the left subtree and larger elements inserted in
the right subtree.

15 12 27 3 10 14 33 18

What would be output if this tree was printed using a
postorder traversal?

(A) 3 10 12 14 15 18 27 33
(B) 10 3 14 12 18 33 27 15
Y (C) 10 3 14 18 33 12 27 15
(D) 15 12 3 10 14 27 18 33
(B) 33 27 18 15 14 12 10 3

G0 ONTO THE NEXT PAGE

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science AB

5 < USE THIS SPACE FOR SCRATCHWORK.

Questions 16-20 refer to the code from the Large Integer case
study. A copy of the code is provided as part of this exam.

16. Inthe BigInt class, functions Equal and LessThan
are the only comparison functions implemented as public
member functions. Which of the following best describes the
reason for this implementation decision?

(A) The author intended for the client to implement other
‘ comparison functions.

- - (B) It is impossible to implement the other comparison

' functions as public member functions.

(C) It is impossible to implement relational operators as
public member functions.

(D) All the relational operators can be defined as free
functions in terms of Equal and LessThan.

(E) The other comparison functions afe not necessary)
because a BigInt is an array of characters.

17. If a linked list were used to store the digits of a BigInt,
which of the following member functions would need to be
changed?

(A) IsNegative
(B) LessThan
(C) Equal

(D) ChangeDigit
(E) ToString

60,0 T0 THE NEXT PAGE

Unauthorized copying or reusing
any part of this page is illegal.

105 |

|

18. Suppose we want to add an additional constructor to create
a BigInt consisting of a positive number in which every

digit is the same. This constructor would have two parameters:

digit, anonzerodigitand occur, the number of times
the digit occurs. For example, BigInt A{('9"', 4)

would result in A having the value 9999. The precondition
of this constructor specifies that digit is a character
between '1' and '9' inclusive and occur isan
integer greater than 0.

Consider the following constructor definitions.

I. BigInt::BigInt(char digit, int occur)
: mySign{positive), myDigits(occur,
{

}

II. BigInt::BigInt (char.digit, int occur)

mySign(positive), myDigits(1l,
{
while (occur > 1)
{
AddSigDigit (GetDigit (0));
occur--;
}
}
IIl. BigInt::BigiInt(char digit, int occur)
mySign (positive), myDigits (1,
{
while (occur > 1)
{
AddSigDhigit (GetDigit(0));
occur--;
}
}

Which of these constructors will work correctly?

(A) Tonly

(B) H only

(C) Tand I only
(D) II and III only
E) LI, and II

Unauthorized copying or reusing
any part of this page is illegal.

106

USE THIS SPACE FOR SCRATCHWORK.

digit), myNumDigits (occur)

myNumDig‘;ts (1)

'0'), myNumDigits (1)

Computer Science AB [

USE THIS SPACE FOR SCRATCHWORK.

19. Consider adding to the BigInt class an additional
operator= member function that setsa BigInt value
equal to the value represented by the apstring rhs.
An incomplete function definition is given below.

const BigInt & BigInt::operator= (const apstring & rhs)
// precondition: rhs consists of digits only,

/7 optiocnally preceded by + or -

// postcondition: BigInt is set to the integer

// represented by rhs.
{
R <additional code> ' ‘ -
: }

Which of the following code segments can be used to replace
<additional code> sothat operator= will work
as intended?

(A) BigInt temp (rhs); S ‘ .
*this = temp;
return *this;

(B) BigInt temp;
temp = rhs;
return temp;

(C) *this = rhs;
return *this;

(D) BigInt temp(rhs);
*this = temp;

(E) BigInt temp (rhs);
return temp;

G0 0N TO THE NEXT PAGE

Unauthorized copying or reusing
any part of this page is illegal.

107 |

USE THIS SPACE £OR SCRATCHWORK.

— -

20. The author of the case study implemented operator+ as
a free function which in turn calls the BigInt member
function operator+= to compute the addition. Suppose
the author had implemented operator+ asa member
function of the BigInt class. ‘

BigInt BigInt::operator+ (const BigInt & rhs) const;
// postcondition: returns the sum of self + rhs

Assume a client program had declared two BigInt
values, A and B, ina program. Which of the following
code segments would NOT compil€ if the author had coded
operator+ asa member function?

(A)A = A + A;
B)Aa = A + B;
(C) A =B + A;
(DA = B + 3; . . . ~
(E) A = 3 + B; o

GO ON TO THE NEXT PAGE
Unauthorized copying or reusing i ; = —
any part of this page is illegal.

Computer Science AB | iy

_ USE THIS SPACE FOR SCRATCHWORK.

— -

Questions 21-22 refer to the following code. -

Assume that linked lists are implemented using the following
declaration.

struct ListNode
{

int info;
ListNode * next;

}s
Consider the following function.

void WhatsThis (ListNode * & p)

{
ListNode * q;
ListNode * r; }
int sum = 0; S —
g = p;
while (g !s= NULL)
{
sum += g->info;
g = g->next;
}
r = new ListNode;
r->info = sum;
r->next = p;
D =Ir
}

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPACE FOR SCRATCHWORK.

— -

21. Assume that p isof type ListNode * and points to the
first node of the following list.

p 1 2 = 3 = 4 = 5

Which of the following best represents p after the call
WhatsThis (p) ?

B (A p = 15 = 15 = 15 15 = 15
(B) p = 15 o - 2 > 3 = 4 =5
<) p I = 2 : = 3 > 4 = 5 = 15
(D) p >] > 2 ' = 3 > 4 5 0
(Ey p—= 15

22. Assume that t isoftype ListNode * and has the value
NULL. What would be the result of the call WhatsThis (t) ?

{A) The function would execute without error and t would
be left pointing to a list with a single node. The node’s
info data member would be zero, and its next
data member would be NULL.

(B) The function would execute without error and t would
be left pointing to a list with a single node. The node’s
info data member would be zero, and its next
data member would be uninitialized.

(C) The function would execute without error and t would
be left pointing to a list with a single node. The node’s
info data member and next data member would
both be uninitialized.

(D) The function would execute without error and t would
remain NULL.

(E) A run-time error would occur due to an attempt to
dereference a NULL pointer.

Unauthorized copying or reusing
any part of this page is illegal.

110

Computer Science AB [T

USE THIS SPACE FOR SCRATCHWORK.

— -

Questions 23-24 are based on the following incomplete function
definition.

int ListMin (const apvector<int> & A, int numItems)
// precondition: A contains numltems elements

// postcondition: returns the value of the

4 smallest element in A

{
int min;
int k = 1;

min = A[0];
while (<condition>)
{
<body>
}
return min;

} -

The placeholders <condition> and <body> are to be
replaced with code so that the function ListMin returns the
value of the smallest element in A, which contains numItems
integers. In addition, the following is to be maintained as an

invariant of the while loop, true each time the loop begins
execution.

for all 3, 0 £ 3 < k, min < A[7F]

GO ON TD THE NEXT PAGE
Enauthorized copying or reusing _ - L
any part of this page is illegal.

23.

24.

Of the following choices for <body>, which maintains the
given loop invariant?

(A) k++;
1f (A[k] < min)
{
min = Alk];
}
(B) if (A[k] < min)
{
min = A[k];
}
k++;
(C) k++;
if (Alk] > min)
{ -
min = A[k];
}
(D) if (A[k] > min)
{
min = Alk];
}
k++;
(E) k++;
if (A[k] >= min)
{
min = A(k];
}

Assume that <body> has been replaced with code that
maintains the given loop invariant. Which of the following
choices for <condition>, ensures that when the loop
terminates, the function ListMin returns the value of the
smallest element in A 7

(A) k < min

(B) k < numItems - 1
(C) k < numItems

(D) k¥ <= numItems

(E) ¥ >= numItems

Unauthorized copying or reusing
any part of this page is illegal.

112

USE THIS SPACE FOR SCRATCHWORK

| GO ON TO THE NEXT PAGE

Computer Science AB [yl

USE THIS SPACE FOR SCRATCHWORK.
25. Consider choosing between storing data in a binary search
tree and storing data in a hash table. Choosing the binary
search tree rather than the hash table is best supported by
which of the following reasons?

I. The Big-Oh average time required to insert an item
into a binary search tree is less than the average time
required to insert an item into a hash table.

II. The Big-Oh average time required to determine
whether a given value is in a binary search tree is less
than the average time required to determine whether a
given value is in a hash table.

III. The Big-Oh average time required to print all items
stored in a binary search tree in sorted order is less
than the time required to print all items stored in a
hash table in sorted order.

(A) Tonly _ N
(B) Il only o e
(C) Tonly

(D) Iand II only

(E) L1, and I1I

G0 ON TO THE NEXT PAGE

Unauthorized copying or reusing
any part of this page is illegal.

| 113

h USE THIS SPACE FOR SCRATCHWORK.
- 26. Assume that binary trees are implemented using the
following declaration.

struct TreeNode

{
int data;
TreeNode * left;
TreeNode * right;

1

Consider the following function.

int Mystery(TreeNode * T)

{
if (T == NULL)
{
return 0;
} -
else T * -
{
return (Mystery(T->left) + Mystery(T->right));
}
}

Of the following, which best describes what function Mystery does?

(A) Mystery returns the number of nodes in the tree T.

(B) Mystexry returns the number of leaf nodes in the tree T.

(C) Mystery returns the number of nonleaf nodes in the tree T.

(D) Mystery returns the sum of all the integer values stored in the tree T.
(E) Mystery returns 0.

Unauthorized copying or reusing
any part of this page is illegal.

GO/ON TO THE NEXT PAGE

RICn

Computer Science AB Sectlon

USE THIS SPACE FOR SCRATCHWORK.

— -

27. Assume that linked lists are implemented using the following
declaration.

struct ListNode

{
int info;
ListNode * next;

}i
Consider the following function.

" void Mystery(ListNode * p)

{
if (p != NULL)
{
Mystery (p->next) ;
if ((p->info % 2) != 0)
(- .
cout << p->info << endl; -
}
}
}

Assume that g isof type ListNode * and thatlist g
is a nonempty list whose info data members are in
increasing order. Of the following, which best describes the
output produced by the call Mystery (q) ?

(A) All info data members with nonzero values will be
printed.

(B) All info data members with odd values will be
printed in increasing order.

(C) All info data members with odd values will be
printed in decreasing order.

(D) Only the first node’s info data member will be
printed if its value is odd.

(E) Only the last node’s info data member will be
printed if its value is odd.

G0 ON T0 THE NEXT PAGE

Unauthorized copying or reusing
any part of this page is illegal.

115

USE THIS SPACE FOR SCRATCHWORK.
28. Assume that binary trees are implemented using the
following declaration.

struct TreeNode
{
int data;
TreeNode * leftChild;
TreeNode * rightChild;
T

The following function may modify the tree T.
void ChangeTree (TreeNode * T)

{
if (T == NULL)

{ return;

if ((T—>rightChild;== NULL) && (T—>leftChild == NULL))
{ return; L -
%f ((T->rightChild != NULL) && (T->leftChild != NULL))

ChangeTree (T->rightChild) ;
ChangeTree (T->leftChild) ;
}
else if (T->rightChild != NULL)
{
T->rightChild = NULL;
}

else

{
T->leftChild = NULL;
}
)

Which of the following trees would NOT be modified by ChangeTree ?

i
OO (25 3
© & ©®© ® 6
ONRO Q @
©, ©» ©
l
2 ®
@ ©
Unauthorized copying or reusing
any part of this page is illegal.

(A
(C
(E

Computer Science AB

« . USE THIS SPACE FOR SCRATCHWORK.

-,

29. Consider the design of a hash function to be applied to
names (sequences of 2 or more letters). The names will be
stored in a hash table (an array) of size 101, and chaining
will be used for collision resolution. Which of the following
is true?

(A) The hash function should return a linked list containing
the letters of the given name.
(B) The hash function should return the same value for
names with the same number of letters.
e (C) If name; comes before name; in alphabetical order, then
’ the value returned by the hash function for name
should be smaller than the value returned by the hash
function for names.
(D) The hash function should return integer values in the
range 0 to 100. _
(E) The hash function should print an error message if it is :
called twice with the same name.: o

30. Consider the following function.

void DoSomething{int n)

{

int j;

for (j = 1; 7 < n; 3§ *= 2)
{

Proc(3);
}
}

Assume that Proc runsin O(1) time. Of the following,
which best characterizes the running time of the call
DoSomething(n) ?

A) 0D

(B) O(log n)

(€) Om)

(D) O(nlogn)

(E) 02"

GO ON TO THE NEXT PAGE
(inautharized copying or reusing - . . .
any part of this page is illegal.

‘ USE THIS SPACE’FOR SCRATCHWORK.
31. Consider the following code segment.

apvector<int> A;
Initialize(A); // resizes A and initializes its elements
int k;

k = 0;
while ((k < A.length()) && (A[k] > 0))
{

k++;

}

cout << k << endl;

Which of the following must be true of the value that is output
when the code segment is executed?

{A) The value is less than A.length () and itisthe index
of the first nonpositive element of array A.)
(B) The value is less than A.length () oritisthe index -
of the first nonpositive element of array A.
(C) The value is greater than A.length () oritisthe
index of the first nonpositive element of array A.
(D) The value is greater than orequal to A.length()
and it is the index of the first nonpositive element
of array A.
(E) The value is greater than orequal to A.length() orit
is the index of the first nonpositive element of array A.

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science AB [Rliay

USE THIS SPACE FOR SCRATCHWORK.

—

32. The information stored in a binary search tree (BST)
is written to a file as follows:

Traverse the tree in some order; :
when a node is visited, write its information to a file.

A new BST is constructed by reading the information from
the file and inserting that information into the tree.

Which of the following traversals will write the information
to the file so that the new BST created by reading the file is
the same as the original BST ?

I. Inorder traversal
II. Preorder traversal
ITI. Postorder traversal

(A) Tonly

(B) I only N
(C) III only

(D) Iand H only

(E) L 1II, and 11T

Unauthorized copying or reusing
any part of this page is illegal.

33. Consider the following function.

int Strange({int n)

{
if (n <= 1)
{
return 1;
}
else
{
- return (Strange(n - 2) + 1);
‘- } :
- }

Which of the following replacements for the line containing
the recursive call returns the same value as the original
version of function Strange 7

(A) return 1;
(B) return (n +
(C) return (n / 2
(D) return (n / 2
(E) return (n / 2

1)
).

=]

Unauthorized copying or reusing
any part of this page is illegal.

USE THIS SPA:CI; FOR SCRATCHWORK.

Computer Science AB Sectlon

USE THIS SPACE FOR SCRATCHWORK.

— -

Questions 34-35 assume that binary trees are implemented using the following declaration.

struct TreeNode

{
int info;
TreeNode * left;
TreeNode * right;
}:

34. Consider the following function.

int TotalOne (TreeNode * T)

{
if (T == NULL)
{
return 0;
} - .
else if ((T—>left == NULL) && (T—>right == NULL)) N
{ o e
return T-—>info;
}
else
{
return (TotalOne(T—>left) + TotalOne (T—>right));
}
}

Of the following, which best describes the value returned by
the call TotalOne (T1) ?

(A) The number of leaf nodes in the tree T1

(B) The number of nonleaf nodes in the tree T1

(C) The sum of all of the integers stored in the nodes in the
tree T1

(D) The sum of all of the integers stored in the nonleaf
nodes in the tree T1

(E) The sum of all of the integers stored in the leaf nodes in
the tree T1 ‘

Unauthorized copying or reusing
any part of this page is illegal.

S |

35. Consider the following function.

int TotalTwo (TreeNode * T)

{
if (T == NULL)
{
return 0;
}
else if ((T—>left == NULL) && (T—>right
{
. return 0;
. }
o else
: {
return (T->info + TotalTwo (T—>left)
}
}

Assume that T2 represents the tree shown below.
T2

RO
ofRo
OO O
OIROIRO

What value is returned by the call TotalTwo (T2) ?

(A) 1
B) 6
(C) 17
(D) 28
(E) 45

Unauthorized copying or reusing
any part of this page is illegal.

122

USE THIS SPACE FOR SCRATCHWORK.

NULL))

+ TotalTwo (T—>right));

Computer Science AB [E1ildT
USE THIS SPACE FOR SCRATCHWORK.

Questions 36-37 assume that linked lists are implemented using
the following declaration.

struct ListNode
{

int info;
ListNode * next;

¥

36. The function Total, partially defined below, is intended
to return the sum of all the info data members in its A)
linked list parameter.

int Total (ListNode * L)
{

int sum = 0;

while (<condition>)

{

sum += L->info;
<statement>

}

return sum;

}

Which of the following can be used to replace
<condition> and <statement> sothat Total
will work as intended?

<condition> <statement>
(A) L !'= NULL L = L->next; .
(B) L '= NULL L->next = L->next->next;
(C) L->»next != NULL L = L->next;
(D) L-»>next == NULL L = L->next;
(E) L->next == NULL L->next = L->next->next;

GO ON TO THE NEXT PAGE
Unauthorized copying or reusing B e
any part of this page is illegal.

123

USE THIS SPAQE:FOR SCRATCHWORK.
37. Consider the following function.

int Mystery(ListNode * L)

{
int num = 0;
while (L-»next != NULL)
{
num += L->info;
L->next = L->next->next;
}

return num;

)

Assume that L1 represents the list shown below.

L1 2 = 4| 41— 6 8

What value is returned by the call tMys tery(L1) ?

(A) 2
(B) 6
(©) 12
(D) 18
(E) 20

Unauthorized copying or reusing
any part of this page is illegal.

38.

.

Consider designing a data structure to store names and grade
point averages (GPA’s) for N students. The data structure
must be designed so that both of the following are possible.

1. Given a student’s name, determine and print that
student’s GPA in O(log N) time.

2. In O(N) time, print a list of students’ names with their
GPA’s, in order from highest GPA to lowest GPA.

Assume that the following declaration has been made.

struct StudentInfo
{

apstring name; // student's name
double gpa; // student's GPA
Yi

Of the following, which is the best design for the data
structure?

(A) Anarray of StudentInfo structures, sorted by GPA
from highest to lowest

(B) An array of StudentInfo structures, sorted
alphabetically by student name

(C) Two arrays: one containing only students’ names,
sorted alphabetically, and the other containing only
students’ GPA’s, sorted from highest to lowest

(D) Two arrays of StudentInfo structures: one sorted
alphabetically by student name and the other sorted by
GPA from highest to lowest

(E) Two arrays: one containing only student names,
sorted alphabetically, and the other containing
StudentInfo structures, sorted by GPA from
highest to lowest

Unauthorized copying or reusing
any part of this page is illegal.

Computer Science AB |

USE THIS SPACEF@R SCRATCHWORK.

) \ USE THIS SPACE FOR SCRATCHWORK.

— -

39. Consider the following expression.
(A > B) && (C <= B)

Assume that A, B, and C are integer variables. Which of
the expressions given below is (are) equivalent to the one
given above?

I. 1(A < B) && {(C >= B)
Il. (A >B) & (B > C)
. L 1((A <=B) [| (B <Q))
(A) Tonly
(B) IIonly

(C) I only
(D) Tand II
(E) II and I1I

Unauthorized copying or reusing
any part of this page is illegal.

126

Computer Science AB [y

_ USE THIS SPACE FGR SCRATCHWORK.

— -,

40. Assume that linked lists are implemented using the following declaration.

struct ListNode
{

char info;
ListNode * next;

};

Consider function Display, which isintended to print the
data in each node of the linked list represented by p.

void Display(ListNode * p)

while (p->next != NULL)
{
cout << p->info << endl;
» p = p->next; - : ‘
£ } I :
- } : ;

Which of the following statements about function
Display is (are) true?

I. If the list is not empty, all characters other than the
first will be printed.
IT1. If the list is not empty, all characters other than the
last will be printed.
III. If the listis empty, a NULL pointer will be
dereferenced.

(A) Ionly
(B) Il only
(C) III only
(D) Iand III
(E) Il and III

END OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY
CHECK YOUR WORK ON THIS SECTION.

DO NOT GO ON TO SECTION I1 UNTIL YOU ARE TOLD TO DO SO.

Unauthorized copying or reusing
any part of this page is illegal.

127

SURVEY QUESTIONS

— .-

41. Approximately how many class periods did you spend using the Large Integer case study?

(A) O

(B) 1-2

(C) 3-5

(D) 6-10

(E) More than 10

42. Approximately how many hours did you spend working on the computer on problems related to the Large
Integer case study?

L A0

: (B) 1-2

(C) 3-5

(D) 6-10

(E) More than 10

43. At what time during the School year did you use the Large Integer case study? .

(A) Did not use it.

(B) Used it right before the AP examination.
(C) Use it only in the middle of the year.

(D) Used it only at the beginning of the year.
(E) Used 1t at multiple times during the year.

e

44. How many students are in your AP Computer Science class?

(A) Independent study
(B) 2-5

(C) 6-10

(D) 11-20

(E) More than 20

Unauthorized copying or reusing
any part of this page is illegal.

128

Quick Reference for apstring

Computer Science AB

extern const int npos; // used to indicate not a position in the string

// public member functions

// constructors/destructor
apstring();

apstring(const char * s);
apstring{const apstring & str);

/7
/7
/7

construct empty string ""
construct from string literal
copy constructor

~apstring(); // destructor

// assignment

const apstring & operator= (const apstring & str); // assign str

const apstring & operator= (const char * s); // assign s 2 -

const apstring & operator= (char ch);

// accessors
int length() const;

int find(const apstring & str) const;

int find(char ch) const;

// assign ch

// number of chars
// index of first occurrence of str
// index of first occurrence of ch

apstring substr({int pos, int_len) const; // substring of len chars, starting at pos

const char * c_str() const;

// indexing

// explicit conversion.to char *

char operator[] (int k) const; // range-checked indexing
char & operator[] (int k); // range-checked indexing

// modifiers

const apstring & operator+= (const apstring & str); // append str
const apstring & operator+= (char ch); // append char

// The following free (non-member) functions operate on strings

// I/0 functions

ostream & operator<< (ostream & os,
istream & operator>> (istream & is,

const apstring & str);
apstring & str);

istream & getline(istream & is, apstring & str);

// comparison operators

bool operator== (const apstring
bool operator!= (const apstring
bool operator< (const apstring
bool operator<= (const apstring
bool operator> (const apstring
bool operator>= (const apstring

R RRRRR

// concatenation operator +

lhs,
lhs,
lhs,
lhsg,
lhs,
lhs,

const apstring & rhs);
const apstring & rhs);
const apstring & rhs);
const apstring & rhs);
const apstring & rhs);
const apstring & rhs);

apstring operator+ {(const apstring & lhs, const apstring & rhs);
apstring operator+ (char ch, const apstring & str);
apstring operator+ (const apstring & str, char ch);

Quick Reference for apvector and apmatrix &

— -

template <class itemType>
class apvector

// public member functions

// constructors/destructor

apvector () ; // default constructor (size==0)
apvector {int size); // initial size of vector is size
apvector (int size, const itemType & fillvalue); // all entries == fillvalue
apvector {const apvector & wvec); // copy constructor

~apvector () ; // destructor

= // assignment - ‘ - .
~ const apvector & operator= (const apvector & vec);

// accessors
int length() const; // capacity of vector

// indexing ‘
itemType & operator|] (int{ index); // indexing with range checking
const itemType & operator]](int index) const; // indexing.with range checking

// modifiers
void resize(int newSize); // change size dynamically; can result in losing values

template <class itemType>
class apmatrix

// public member functions

// constructors/destructor

apmatrix(); // default size is 0 x O
apmatrix{(int rows, int cols); . // size is rows X cols
apmatrix(int rows, int cols, const itemType & fillvalue); // all entries == fillValue
apmatrix(const apmatrix & mat); // copy constructor

- ~apmatrix(); // destructor

// assignment
const apmatrix & operator = (const apmatrix & rhs);

// accessors
int numrows () const; // number of rows
int numcols() const; // number of columns

// indexing
const apvector<itemlype> & operator[](int k) const; // range-checked indexing
apvector<itemType> & operator|] (int k) // range-checked indexing

// modifiers
void resize(int newRows, int newCols); // resizes matrix to newRows x newCols
// (can result in losing values)

130

template <class itemType>
classgs apstack

// public member functions

// constructors/destructor
apstack{();
apstack{const apstack & s);
~apstack () ;

// assignment

const apstack & operator = (const
~ // accessors

const itemType & top{() const;
i bool isEmpty() const;
’ int length{) const;

// modifiers _

void push{const itemType & item);

void pop(); K
void pop(itemType & item);
void makeEmpty () ;

Computer Science AB [[el[/1113

Quick Reference for apstack and apqueue

// construct empty stack
// copy constructor
// destructor

apstack & rhs);

//
/7
/7

return
return
return

top element (NO pop)
true if empty, else false
number of elements in stack

/7
/7
//
/7

push item onto top of stack
pop top element -
combines pop and top
make stack empty (no elements)

template <class itemType>
class apgueue

// public member functions

// constructors/destructor
apqueue () ;

apgueue (const apgqueue & g);
~apqueue () ;

// assignment
const apgueue & operator=

// accessors

const itemType & front()
bool isEmpty() const;
int length() const;

const;

// modifiers
void engueue(c
void dequeue ()
void dequeue (i
ty

temType & item);
void makeEmpty (

)i

onst itemType & item);

// construct empty gueue
// copy constructor
// destructor

(const apgueue & rhs);

/7
I/
//

return front (no degueue)
return true 1if empty else
return number of elements

false
in gueue

/1
/!
/7
/1

insert item (at rear)
remove first element
combine front and degqueue
make queue empty

131

Computer Science AB [{& 63T

Header File for the BigInt clag_s:

#ifndef _BIGINT_H
#define _BIGINT_H

/7

// implements an arbitrary precision integer class

//

// constructors:

/7

// BigInt () -- default constructor, value of integers is 0

// BigInt(int n) -~ initialize to value of n (C++ int)

// BigInt(const apstring & s) -- initialize to value specified by s .
s // it is an error if s 1is an invalid integer, e.g.,
N // "1234abc567". In this case the bigint value is garbage

/7

//

// ***** arithmetic operators:

/7

// all arithmetic operators +, -, * are oveéerloaded both

// in form +=, -=, *= and as binary operators ’ T

// :

// multiplication also overloaded for *= int
// e.g., BigInt a *= 3 (mostly to facilitate implementation)

//

// ***** Jogical operators:

//

// bool operator == (const BigInt & lhs, const BigInt & rhs)
// bool operator != (const BigInt & lhs, const BitInt & rhs)
// bool operator < (const BigInt & lhs, const BigInt & rhs)
// bool operator <= (const BigInt & lhs, const BigInt & rhs)
// bool operator > (const BigInt & lhs, const BigInt & rhs)
// bool operator >= (const BigInt & lhs, const BigInt & rhs)
/7

J/ FrxE¥F T /0 operators:

//

// wvoid Print ()

// prints value of BigInt (member function)

// ostream & operator << (ostream & os, const BigInt & b)
s stream operator to print value

//

// lstream & operator >> (istream & in, const BigInt & b)

// reads whitespace delimited BigInt from input stream in
/7

#include <iostream.h>- -
#include "apstring.h" // for strings

#include "apvector.h" // for sequence of digits

— -

class BigInt
{

public:
BigInt(); // default constructor, value = 0
BigInt(int); // assign an integer wvalue
BiglInt (const apstring &); // assign a string

// may need these in alternative implementation

// BigInt (const BigInt &); // copy constructor ;
// ~BigInt(); // destructor
// const BigInt & operator = (const BigInt &); // assignment operator

// operators: arithmetic, relational

+

% % |
nm o un

const BigInt &);
const BigInt &);

const BigInt & operator (
{
{(const BiglInt &): =
(.

const BigInt & operator

const BigInt & opérator B
const BigInt & opérator int num) ;)
apstring ToString{() const; // convert to string
int ToInt () const; // convert to int
double ToDouble() const; // convert to double
// facilitate operators ==, <, << without friends
bool Equal (const BigInt & rhs) const;
bool LessThan(const BigInt & rhs) const;
void Print(ostream & o0s) const;
private:
// other helper functions
bool IsNegative() const; // return true iff number is negative
bool IsPositive() const; // return true iff number is positive
int NumDigits() const; // return # digits in number

int GetDigit(int k) const;

void AddSigDigit(int wvalue);

void ChangeDigit (int k, int wvalue);
void Normalize();

// private state/instance variables

enum Sign{positive,negative};

Sign mySign; // is number positive or negative
apvector<char> myDigits; // stores all digits of number
int myNumDigits; // stores # of digits of number

134

Computer Science AB |[[¢f]

// free functions .

ostream & operator << (ostream &, const BigInt &);
istream & operator >>(istream &, BigInt &);

BigInt operator +{const BigInt & lhs, const BigInt & rhs);

BigInt operator - (const BigInt & lhs, const BigInt & rhs);

BigInt operator *{const BigInt & lhs, const BigInt & rhs);

BigInt operator *(const BigInt & lhs, int num);

BigInt operator *(int num, const BigInt & rhs);

bool operator == {(const BigInt & lhs, const BigInt & rhs);

bool operator < (const BigInt & lhs, const BigInt & rhs);

bool operator != (const BigInt & lhs, const BigInt & rhs);
. bool operator > (const BigInt & lhs, const BigInt & rhs); .
N bool operator >= (const BigInt & lhs, const BigInt & rhs);
- bool operator <= (const BigInt & lhs, const BigInt & rhs);

#endif // _BIGINT_H not defined

135

Index of functions in the BigInt class

BigInt::BigInt ()

BigInt::BigInt{(int num)

BigInt::BigInt(const apstring & s)

const BigInt & BigInt::operator -=(const BigInt & rhs)
const BigInt & BigInt::operator +=(const BigInt & rhs)
BigInt operator +{const BigInt & lhs, const BigInt & rhs)
BigInt operator - {const BigInt & lhs, const BigInt & lhs)
void Bigint::Print(ostream & os) const

apstring BigInt::ToString() const

int BiglInt::ToInt () const

double BigInt::ToDouble() const

ostream & operator << (ostrxeam & out, const BigInt & big)
istream & operator >>(istream & in, BigInt & big)

bool operator ==(const BigInt & lhs, const BigInt & rhs)
bool BiglInt::Equal (const BigInt & rhs) const
bool operator !=(const BigInt &lhs, const BigInt & rhs)

bool operator <(const BigInt & lhs, const BigInt & rhs)
bool BigInt:: LessThan(const BigInt &rhs) const

bool operator >(comst BigInt & lhs, const BigInt & rhs)
bool operator <={const BigInt & lhs, const BigInt & rhs)
bool operator »>=(const BigInt & lhs, const BigInt & rhs)
void BiglInt::Normalize()

const BigInt & Biglnt:: operator *=(int num)

BigInt operator *{(const BigInt & a, int num)

BigInt operator *(int num, const BigInt & a)

const BigInt & BigInt::operator *=(const BigInt & rhs)
BigInt operator *(const BigInt & lhs, const BigInt & rhs)
int BigInt::NumDigits() const

int BigInt::GetDigits() const

void BigInt::ChangeDigit(int k, int value)

void BiglInt::AddSigDigit(int value)

bool RiglInt::IsNegative() const

bool BigInt::IsPositive() const

136

e,

#include <iostream.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
#include "bigint.h"
#include "apvector.h"

const int BASE = 10;
// BigInts are implemented using a Vector<char> to store

// the digits of a Biglnt
// Currently a number like 5,878 is stored as the vector (9,7,8,5}

// 1i.e., the least significant digit is the first digit in the vector;

// for example, GetDigit(0) returns 9 and getDigit(3) returns 5.
// All operations on digits should be done using private
// helper functions:

//

// int GetDigit (k) -- return k-th digit

// void ChangeDigit({k,val) -- set k-th digit to val

// void AddSighigit(val) --- add new most significant digit val
/7

// by performing all ops in terms of these private functions we
// make implementation changes simpler

// I/0 operations are facilitated by the ToString() member function
// which converts a BigInt to its string (ASCII) representation

BigInt::BigInt ()
// postcondition: bigint initialized to 0
mySign{positive),
myDigits(1,’0’),
myNumDigits (1)
{
// all fields initialized in initializer 1list

}

BigInt::BigInt{int num)

// postcondition: bigint initialized to num
mySign{positive),
myDigits (1,0},
myNumDigits (0)

// check 1f num is negative, change state and num accordingly
if (num < 0)
{

mySign = negative;
num = -1 * num;

// handle least-significant digit of num (handles num == 0)

AddSigDigit (num % BASE);
num = num / BASE;

// handle remaining digits of num

while {(num != 0)

{
AddSigDigit(num % BASE); -
num = num / BASE;

BigInt::BigInt (const apstring & s) v
// precondition: s consists of digits only, optionally preceded~by + or -
// postcondition: Bigint initialized to integer represented by s

// if s is not a well-formed BigInt (e.g., contains non-digit
// characters) then an error message is printed and abort called
: mySign(positive),
myDigits{(s.length(),’0’),
myNumDigits (0)
{
int k;
7 int limit = 0;
if (s.length() == 0)
{
myDigits.resize(l);
i AddSigDhigit (0) ; ;) -
= return;
}
if (s[0] == '-")
{
mySign = negative;
limit = 1; _
} -) - o~
if (s[0] == "+7) ; .
{
limit = 1;
}
// start at least significant digit
for(k=s.length() - 1; k >= limit; k--)
{
if (! isdigit(slkl}l))
{
cerr << "badly formed BigInt value = " << s << endl;
abort () ;
}
AddSigDigit(s[kl-‘0");
}
Normalize();
}

138

Computer Science AB CaseStud

;; const BigInt & BigInt::operator -=(const BigInt & rhs) -4
: // postcondition: returns value of bigint -~ rhs after subtraction
{ .
int diff;

int borrow = 0;

int k;
int len = NumDigits{();

if (this == &rhs) // subtracting self?
{
*this = 0; ’
return *this;
}
o // signs opposite? then lhs - (-rhs) = lhs + rhs . -
if (IsNegative{) != rhs.IsNegative())
{
*this +=(-1 * rhs);
return *this;
}

// signs are the same, check which number is larger _
// and switch to get larger number "on top" if necessary
// since sign can change when subtracting
// examples: 7 - 3 no sign change, 3 - 7 sign changes
// -7 - (-3) no sign change, -3 -(-~7) sign changes
i1f (IsPositive() && (*this) < rhs ||

IsNegative() && (*this) > rhs)

*this = rhs - *this;

if (IsPositive()) mySign
else mySign
return *this;

negative;
positive; // toggle sign

o

}

// same sign and larger number on top

for(k=0; k < len; k++)
{ .
diff = GetDigit(k) - rhs.GetDigit(k) - borrow;
borrow = 0;
if (diff < 0)
{

diff += 10;

borrow = 1;
}
ChangeDigit (k,diff);

}
Normalize();
return *this;

139

const BigInt & BiglInt::operator +=(const BigInt & rhs))
// postcondition: returhs value of bigint + rhs after additionw

{

}

int sum;
int carry = 0;
int k;
int len = NumDigits(); // length of larger addend
if (this == &rhs) // to add self, multiply by 2
{

*this *= 2;

return *this;
}
if (rhs == 0)) // zero is special case ’
{

return *this;
}
if (IsPositive() != rhs.IsPositive()) // signs not the same, subtract
(.) ,

*this -= (-1 * rhs); . -

return *this;

}
// process both numbers until one is exhausted
1f (len < rhs.NumDigits())
len = rhs.NumDigits();
for(k=0; k < len; k++)
sum = GetDigit (k) + rhs.GetDigit(k) + carry;
carry = sum / BASE;

sum = sum % BASE;

1f (k < myNumDigits)

{
ChangeDigit (k, sum) ;
}
else
{
AddSigDigit (sum) ;
}
}
if (carry != 0)
{
AddSigDhigit{carry) ;
}

return *this;

BigInt operator +(const BigInt & lhs, const BigInt & rhs)
// postcondition: returns a bigint whose value is lhs + rhs

{

}

BigInt result(lhs);
result += rhs;
return result;

BigInt operator - (const BigInt & lhs, const BigInt & rhs)
// postcondition: returns a bigint whose value is lhs - rhs

{

BigInt result(lhs);
result -= rhs;
return result;

Computer Science AB {3

e,

void BigInt::Print(ostream & os) const
// postcondition: BigInt inserted onto stream os — -

{
}

0s << ToString();

apstring BigInt::ToString() const
// postcondition: returns string equivalent of Bigln
{

int k;

int len = NumDigits();

apstring s = "*";

if (IsNegative())

for(k=len-1; k >= 0; k--)
{
s += char('0'+Gethigit(k));
3
return s;

} T : -

int BigInt::ToInt() const
// precondition: INT_MIN <= self <= INT_MAX
// postcondition: returns int egquivalent of self

{
int result = 0;
int k;
i1if (INT_MAX < *this) return INT_MAX;
if (*this < INT_MIN) return INT_MIN;
for(k=NumDigits()-1; k >= 0; k--)
{
result = result * 10 + GetDigit(k);
}
if (IsNegative(})
{
result *= -1;
}
return result;
}

double BigInt::ToDouble() const
// precondition: DBL_MIN <= self <= DLB_MAX
// postcondition: returns double egquivalent of self

{

double result = 0.0;

int k;

for (k=NumDigits{)-1; k >= 0; k--)
{

}
if (IsNegative(}))
{

}

return result;

result = result * 10 + GetDigit(k);

result *= -1;

ostream & operator << (ostream & out, const BigInt & big)
// postcondition: big inserted onto stream out - -

{

big.Print(out);
return out;

}

istream & operator >> (istream & in, BigInt & big)
// postcondition: big extracted from in, must be whitespace delimited
{

apstring s;

in >> s;

big = BigInt(s);

return in;

}

bool operator == (const BigInt & lhs, const BigInt & rhs)
// postcondition: returns true 1if lhs == rhs, else returns false
{

return lhs.Equal (rhs);

}
bool BigInt::Equdl(const BigInt & rhs) const . .
// postcondition: returns true if self == rhs, else returns false
{
if (NumDigits () !'= rhs.NumDigits() ll IsNegative() != rhs.IsNegative())

{

return false;
}
// assert: same sign, same number of digits;

int k;
int len = NumDigits();
for(k=0; k < len; k++)
{
if (GetDigit(k) != rhs.GetDigit{k)) return false;
}

return true;

}

bool operator != (const BigInt & lhs, const BigInt & rhs)
// postcondition: returns true if 1lhs != rhs, else returns false
{
return ! (lhs == rhs);
}

bool operator < (const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs < rhs, else returns false

{
}

return lhs.LessThan(rhs);

Computer Science AB

i bool BigInt::LessThan{const BigInt & rhs) const .
// postcondition: return true if self < rhs, else returns false

{

// 1f signs aren't equal, self < rhs only if self is negative

1f (IsNegative() != rhs.IsNegative())

{

return IsNegative();

}

// if # digits aren't the same must check # digits and sign

if (NumDigits() != rhs.NumDigits())

{
= - return (NumDigits() < rhs.NumDigits() && IsPositive()) || -
o (NumDigits () > rhs.NumDigits() && IsNegative());

}

// assert: # digits same, signs the same

int k; _ .
int len = NumDigits(); . o

for(k=len-1; k >= 0; k--)
{
if (GetDigit(k) < rhs.GetDigit(k)) return IsPositive():;
if (GetDigit (k) > rhs.GetDigit(k)) return IsNegative():;
}

return false; // self == rhs

}

bool operator > (const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs > rhs, else returns false

{
}

bool operator <= (const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs <= rhs, else returns false

{
}

bool operator >= (const BigInt & lhs, const BigInt & rhs)
// postcondition: return true if lhs >= rhs, else returns false

{
}

return rhs < lhs;

return lhs == rhs || lhs < rhs;

return lhs == rhs || lhs > rhs;

void BigInt::Normalize()
// postcondition: all leading zeros removed
{
int k;
int len = NumDigits{();
for(k=len-1; k >= 0; k--) // find a non-zero digit
{
if (GetDigit(k) != 0) break;
myNumDigits--; // "chop" off zéros
}
if (k < 0) // all zeros
{
myNumDigits = 1;
mySign = positive;

143

const BigInt & BigInt::operator *=(int num) -
// postcondition: returns num * value of BigInt after multiplication
{
int carry = 0;
int product; // product of num and one digit + carry
int k;
int len = NumDigits{();

if (0 == num) // treat zero as special case and stop
{

*this = 0;

return *this;

)

if (BASE < num|| num < 0) // handle pre-condition failure
{

*this *= BigInt {(num);

return *this;

}

1f (1 == num) // treat one as special case, no work
{ - N
return *this;

A

}

for(k=0; k < len; k++) // once for each digit
{

product = num * GetDigit{k) + carry;

carry = product/BASE;

ChangeDigit (k,product % BASE);
}

while (carry '= 0) // carry all digits
{

AddSigDhigit (carry % BASE);

carry /= BASE;
}

return *this;

BigInt operator *(const BigInt & a, int num)
// postcondition: returns a * num
{

BigInt result(a);

result *= num;

return result;

}

BigInt operator *(int num, const BigInt & a)
// postcondition: returns num * a
{

BigInt result(a);

result *= num;

return result;

Computer Science AB CaseStdy

)
Ny

const BigInt & BigInt::operator *=(const BigInt & rhs)
// postcondition: returns value of bigint * rhs after multlpllcatlon

{
// uses standard "grade school method" for multiplying

1f (IsNegative() != rhs.IsNegative())
{

mySign = negative;
}

else

{

mySign = positive;

}

BigInt self(*this); // copy of self

BigInt sum(0); ’ // to accumulate sum

int k;

int len = rhs.NumDigits{(); // # digits in multiplier

for(k=0; k < len; k++)
{
sum += self_* rhs.GetDigit(k); // k-th digit * self
self *= 10; = // add a zero--
} : e
*this = sum;
return *this;

}

BigInt operator *(const BigInt & lhs, const BigInt & rhs)
// postcondition: returns a bigint whose value is lhs * rhs
{

BigInt result(lhs);

result *= rhs;

return result;

3

int BigInt::NumDigits() const
// postcondition: returns # digits in BiglInt
{
return myNumDigits;
}

int BigInt::GetDigit{int k) const
// precondition: 0 <= k < NumDigits/()
// postcondition: returns k-th digit

// (0 if precondition is false)
// Note: Oth digit is least significant digit
- A

if (0 <= k && k < NumDigits())
{

return myDigits([k] - ‘0';
}
return 0;

}

void BigInt::ChangeDigit(int k, int value)
// precondition: 0 <= k < NumDigits({)
// postcondition: k-th digit changed to value
// Note: Oth digit is least significant digit
{
if (0 <= k && k < NumDigits{())
{

myDigits([k] = char(’0’ + value);
}
else -
{
cerr << "error changeDigit " << k << " " << myNumDigits << endl;
}

1415

)
Py

void BigInt::AddSigDigit(int value) .
// postcondition: value added to BigInt as most significant digit

// Note: Oth digit is least significant digit
{ if (myNumDigits >= myDigits.length())
{ myDigits.resize (myDigits.length() * 2);
%yDigi;s[myNumDigits} = char(’'0’ + value);
myNumDigits++;

}

bool BigInt::IsNegative() const
. // postcondition: returns true 1ff BigInt is negative
- { . . .
SR return mySign == negative;

}

bool BigInt::IsPositive() const
// postcondition: returns true i1ff BigInt i1s positive

{
}

return mySign == positive;

146

Computer Science AB

COMPUTER SCIENCE AB
SECTION II
Time—1 hour and 45 minutes
Number of questions— 4
Percent of total grade—50

Some questions in the free-response section require you to write program segments. These are to be written
in C++.

The questions are printed in this booklet and on the green insert. You are to use the green insert onl§/ to
organize your responses and for scratchwork, but you must write all your answers in the pink booklet. Write
your answers in pencil only. Be sure to write CLEARLY and LEGIBLY. If you make an error, you may save
time by crossing it out rather than trying to erase it. All questions are given equal weight. Credit.for partial
solutions will be given. Do not spend too much time on any one problem.

When you are told to begin, open your booklet, carefully tear out the green insert, and start to work.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Copyright © 1999 College Entrance Examination Board and Educational Testing Service. All rights reserved.

147

COMPUTER SCIENCE AB
SECTION II
Time—1 hour and 45 minutes
Number of questions—4
Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN C++.

Note: Assume that the standard libraries (iostream.h, fstream.h, math.h, etc.) and the AP C++ classes
are included in any program that uses a program segment you write. If other classes are to be included, that

information will be specified in individual questions. A Quick Reference to the AP C++ classes is included in the
case study insert.)

1. A patchwork quilt can be made by sewing together many blocks, all of the same size. Each ;i:ndividual block is
made up of a number of small squares cut from fabric. A block can be represented as a two-dimensional array of
nonblank characters, each of which stands for one small square of fabric. The entire quilt can also be represented
as a two-dimensional array of completed blocks. The example below shows an array that represents a quilt made
of 9 blocks (in 3 rows and 3 columns). Each block contains 20 small squares (of 4 rows by 5 columns). The quilt
uses 2 different fabric squares, represented by the characters ‘x’ and ’.’. We consider only quilts where the

main block alternates with the same block flipped upside down (i.e., reflected about a horizontal line through the
block’s center), as in the example below.

Consider the problem of storing and displaying information about a quilt.

The class Quilt, whose declaration is shown below, is used to keep track of the blocks for an entire quilt.
Since the pattern is based on one block, we only store that block and the number of rows and columns of blocks.
For the example shown above, we would store the upper left 4 X 5 block, 3 for the number of rows of blocks in
the quilt and 3 for the number of columns of blocks in the quilt.

class Quilt

{
public:
Quilt(istream & inFile, int rowsOfBlocks, int colsOfBlocks);
// constructor, given number of blocks in each row and column
apmatrix<char> QuiltToMat () ;
// returns a matrix with the entire quilt stored in it
private:
apmatrix<char> myBlock; // stores pattern for one block
int myRowsOfBlocks; // number of rows of blocks in the quilt
int myColsOfBlocks; // number of columns of blocks in the quilt
void PlaceBlock(int startRow, int startCol,
apmatrix<char> & gmat);
void PlaceFlipped(int startRow, int startCol,
apmatrix<char> & gmat);
Y

149

(a) Write the code for the constructor that initializes a quilt, as started below. The constguctor reads the block
pattern for the main block from a file represented by the parameter inFile. You may assume the file is
open and that the file contains the number of rows followed by the number of columns for the block,
followed by the characters representing the pattern. For example, the file pattern, which contains the
pattern for the first block in the quilt shown above, would look like this:

= The constructor also sets the number of rows and columns of blocks which make up the entire.quilt in the.
N initializer list.

Complete the constructor below. Assume that the constructor is called only with parameters that satisfy its
precondition.

Quilt::Quilt(istream & inFile, int rowsOfBlocks, int .colsOfBlocks)
: myBlock (0, 0), myRowsOfBlocks (rowsOfBlocks), s
myColsOfBlocks (colsOfBlocks)
// precondition: inFile is open, rowsOfBlocks > 0, colsOfBlocks > 0
// postcondition: myRowsOfBlocks and myColsOfBlocks are initialized to

// the number of rows and columns of blocks that make up
// the quilt; myBlock has been resized and

// initialized to the block pattern from the

// stream inFile.

 GO.ON TO THE NEXT PAG

150

Computer Science AB [EI1HITS

(b) Write the private member function PlaceFlipped, as started below. PlaceFlipped is intended to
place a flipped (upside-down) version of the block into the matrix gmat with the flipped block’s upper left
corner located at the startRow, startCol positionin gmat.

For example, if quilt Q contains the block shown in part (a) and if M is a matrix large enough to hold the
characters in the whole quilt, then the call

Q.PlaceFlipped(4, 10, M)
would place the flipped version of Qs quilt block into matrix M as the third block in the second row of

quilt blocks. This is the block whose upper-left corner is at position M[4][10]. In the diagram below, the
upper-left corner of the flipped block being placed into M is circled.

X.X.

K.

X

. ;..X.

R G ~
CLX.X. -
X...X

X.X. ..

X X.X. X

X X X X

You may adapt the code of the private member function PlaceBlock, given below, which places
the block (not inverted) into the matrix qmat with the block’s upper left corner located at the
startRow, startCol position.

void Quilt::PlaceBlock(int startRow, int startCol,
apmatrix<char> & gmat)
// precondition: startRow = 0; startCol = 0;

/7 startRow + myBlock.numrows () £ gmat.numrows/();
// startCol + myBlock.numcols() £ gmat.numcols();
// postcondition: myBlock has been copied into the matrix
/7 gmat with its upper-left corner at the position
/7 startRow, startCol
{
int ¥, c¢;
for (r = 0; r < myBlock.numrows (); r++)
(
for (¢ = 0; ¢ < myBlock.numcols(); c++)
{

gmat [startRow + r][startCol + c¢] = myBlock[r][c];

)
}
}

L 151

Complete the member function PlaceFlipped below. Assume that PlaceFliﬁpediscdbdonw
with parameters that satisfy its precondition. --

void Quilt::PlaceFlipped(int startRow, int startCol,
apmatrix<char> & gmat)

// precondition: startRow = 0; startCol = 0;

/7 startRow + myBlock.numrows () £ gmat.numrows();
// startCol + myBlock.numcols () £ gmat.numcols/();
// postcondition: a flipped version of myBlock has been copiled into the
// matrix gmat with its upper-left corner at the position
!/ startRow, startCol
{
int r, c;)
for (r = 0; r < myBlock.numrows (); r++)
{
for (¢ = 0; ¢ < myBlock.numcols(); c++)
{
} R
}
}

Computer Science AB [ESTdIE

(c) Write the member function QuiltToMat, asstarted below. QuiltToMat returns arhatrix representing
the whole quilt in such a way that the main block alternates with the flipped version of-the main block, as
shown in the original example. If Q represents the example quilt, then the call Q.QuiltToMat ()
would return a matrix of characters with the given block placed starting with the upper-left corner at position
0, 0; the flipped block placed with its upper-left corner at position 0, 5; the given block placed with its upper-
left corner at position 0, 10; the flipped block placed with its upper-left corner at position 4, 0, and so on.

In writing QuiltToMat, you may call functions PlaceBlock and PlaceFlipped specified in
part (b). Assume that PlaceBlock and PlaceFlipped work as specified, regardless of what you
wrote in part (b). '

Complete the member function QuiltToMat below.

apmatrix<char> Quilt::QuiltToMat ()

2. This question involves reasoning about the code from the Large Integer case study. A <opy of the code is
provided as part of this exarnination. - -

(a) Write anew BigInt member function Div2, as started below. Div2 should change the value of
the BigInt to be the original value divided by 2 (integer division). Assume the BigInt is greater than
orequal to 0. One algorithm for implementing Div2 is:

1. Initialize a variable carryDown to 0.

2. For each digit, d, starting with the most significant digit,
2.1 replace that digit with(d / 2) + carryDown
2.2 let carryDown be da % 2) * 5

3. Normalize the result.

Complete member function Div2 below.

void BigInt::Div2 ()
// precondition: BigInt = 0

154

Computer Science AB [S Il

(b) Write a definition to overload the / operator, as started below. Assume that dividend and divisor
are both positive values of type BigInt. - -

For example, assume that bigNuml and bigNum2 are positive values of type BigInt:

bigNuml bigNum?2 bigNuml / bigNum2
' 18 9 2
s 17 2 8
Y 8714 2178 4
9990 999 10

_— There are many ways to implement division; however, you must use a binary search algorithm to find the

~ quotient of dividend divided by divisor in this problem. You will receive no credit on this part if -
you do not use a binary search algorithm.
One possible algorithm for implementing division using binary search is as follows:

Let low and high repfesent a range in which the quotient is found.

Initialize low to 0 and high to dividend.
For each iteration, compute mid = (low + high + 1), divide mid by 2, andcompare

mid * divisor with dividend to maintain the invariant that low < quotient and

high 2 guotient.
When low == high, the quotient has been found.
In writing function operator/ you may call function Div2 specified in part (a). Assume that Div2
works as specified, regardless of what you wrote in part (a). You will receive NO credit on this part if you do

not use a binary search algorithm.

Complete operator/ below. Assume that operator/ iscalled only with parameters that satisfy its
precondition.

BigInt operator/ (const BigInt & dividend, const BigInt & divisor)
// precondition: dividend > 0, divisor > 0

165 |

!]

3. Consider designing a data structure to represent a high school club of students with a cémmon interest. The
information to be stored in the data structure is as follows: - -

1. The name of the club.

2. A linked list of club members. For each member, the student’s name and grade level in high school is
stored.

One way to do this is to use the declarations given below. The first is for a node in the linked list of club
members and the second is for the club itself. ’

struct Member

{ .
apstring name; // name of club member -
int level; // grade 9, 10, 11, or 12
Member * next; // next member on the list

Member (const apstring & nm, int 1lv, Member * nx);
// constructor ,
}i N - : o~
Member: :Member (const apstring & nm, int lv, Member * nx)
name {nm) , level{lv), next (nx)

{1}

struct Club

{
apstring clubName; // name of club
Member * memberList; // list of members in the club
Club () ; // default constructor
Club(const apstring & clubnm); // constructor

1

For example, shown below are two variables of type Club; the first represents the German club and the
second represents the Computer club.

Clubl

clubName: German

me@erList ‘ﬂ'\ Robertsh(ﬂ}*ﬁ*{ Schwab hﬁl H*s’{ Shaw l 9 lH Hunt ‘1% RodgerJlOm

Club2

clubName: Computer

menmberList —>Schwab|11]4+{ Chase [9 [+ Taylor [9 [}+{ Chen [12]++] Larson [11]}+{Chapman]12]/

Computer Science AB

(a) Write function InsertMember, as started below. InsertMember adds a studenf with the given name
and respective level in high school to the given club. -

For example, after the call InsertMember ("Taylor", 9, Clubl), variable Clubl might be as
shown below. The diagram shows that the new member "Taylor" was inserted at the beginning of the
list of members, but the student could have been inserted anywhere in the list.

Clubl

clubName: German

5

memberList —= Taylor | 9 [}~ Roberts|10[++{Schwab |11+ Shaw |9 [}={ Hunt [10[}=] Rodger [10}/]

Complete function InsertMember below. Assume that InsertMember is called only with
parameters that satisfy its precondition.

void InsertMember (const apstring a name, int level, Club & anyClub)

// precondition: anyClub contains zero or more members, name does not
!/ _appear in anyClub, and level is 9, 10, 11, or 12

// postcondition: a newrmember with the given name and.respective level
// has been added to anyClub -

(b) Write function CountLevel, as started below. CountLevel counts and returnd the number of club
members of the specified level in anyClub. - -

For example, the call CountLevel (Clubl, 10) returns 3, since there are 3 tenth graders in the

German club. The call CountlLevel (Club2, 10) returns O since there are no tenth graders in the
Computer club. ‘

Complete function CountLevel below. Assume that CountLevel is called only with parameters that
satisfy its precondition.

int CountLevel (const Club & anyClub, int level)
// precondition: level is 9, 10, 11, or 12
// postcondition: returns the number of members in anyClub i
= // ' of that level -

GO/ON TO THE NEXT PAGE

Computer Science AB |1

)
.

(c) Write function PrintClubsWithMostInLevel, as started below. .
PrintClubsWithMostInLevel is given an array of clubs and a grade level; it determines which of
the clubs in the array has the most members in the given level in high school, and prints the name of that
club. If there is a tie, multiple clubs are printed, one club per line.

For example if clubs is the array shown below,
PrintClubsWithMostInLevel (clubs, 10) would print
German
Singing
N as both of these clubs contain the largest nAumber of tenth graders (3).

clubName: German

memberList—] Taylor | 9 [{+{Roberts[10[}+{Schwab[11[}+ Shaw [9[}+{ Hunt [10[+{Rodger [10]/

clubName: Computer

memberList—vlﬁwabth—'{ Chase L9 H——>| Taylor |9 IH Chen |12H—>[Larson |11|-|—>|Chapman|12]/|

clubName: Camera

menberList—-lM@H——lMatsuokdll—M Sauls |11|HStehlik |12|-|—>{Nevison[12m

clubName: Singing

memerListﬂunt |10H—>| Clancy |IOH—->{ Carter |12|H0wens |11H—>1 Lee |10H—>| Tilton |12|:|—>[Brady |12|/|

clubName: Running

memberList—s| Weiss |10[}*{Astrachar| 12[}={Johnson|11]+={ Lewis |10/

159

In writing PrintClubsWithMostInLevel, you may call function CountLevel specified in
part (b). Assume CountLevel works as specified, regardless of what you wrote in part (b).

Complete function PrintClubsWithMostInLevel below. Assume that
PrintClubsWithMostInLevel is called only with parameters that satisfy its precondition.

void PrintClubsWithMostInLevel (const apvector<Club> & clubsArray,
int level)
// precondition: clubsArray contains clubsArray.length{() clubs
// postcondition: prints the name of the club or clubs in clubsArray
// that contain the largest number of members in a given
// level in high school (9 -~ 12), one club per line.

160

Computer Science AB

Assume that a binary tree of names is implemented using the following declaration.

struct TreeNode

{
apstring name;
TreeNode * left;
TreeNode * right;

Y

Assume that the integer function Max has been defined. Max returns the greater of its two integer parameters,
as specified below.

int Max(int x, int v)
// postcondition: returns the maximum of x and y

A path in a tree is a sequence of nodes
node;, node,, ..., node,

such that for any j, node , is either the left child or right child of node ;. The length of a path is the number of

nodes in the path (k in the example just given).

(a) Write function PathLength, -as started below. If person P isintree T, then
PathLength (T, P, 1) should return the length of the longest path from the root of T to a node
containing P; if person P does not appear in tree T, then PathLength(T, P, ‘1) should return 0.
Note that parameter Level can be used to keep track of the current level of the tree.

For the tree given above, the following are examples of calls to PathLength.

Function Call Value Returned

PathLength (T, "Susan”, 1)
PathLength (T, "Ken", 1)
PathLength (T, "Chris", 1)
PathLength (T, "David", 1)

PathLength (T->left, "Theresa", 1)
PathLength (T->right->1left, "Don", 1)

W O oW

In writing PathLength, you may call function Max as specified in the beginning of this question.
Assume that Max works as specified.

Complete function PathLengéh below. ‘ —

int PathLength(TreeNode * T, const apstring & someName, int level)

162

Computer Science AB S

i (b) Write function RootPath, as started below. RootPath should return the length of the longest path

from the root of the tree to a node containing the same name as the root; if no node otherthan the root
contains that name, then RootPath returns I; if the tree is empty, RootPath should return O. For the-
tree given above, the following are examples of calls to RootPath.

Function Call Value Returned

RootPath (T)

RootPath (T->left)
RootPath(T->right)
RootPath(T->left~->left->left)

O 01

In writing RootPath, you may call function PathLength specified in part (a). Assume that-
- PathLength works as specified, regardless of what you wrote in part (a).

Complete function RootPath below,

int RootPath(TreeNode * T)

END OF EXAMINATION

163

~ Computer Science AB Examinations

B Section I: Multiple Choice

B Section II: Free Response

B Student Preparation for the Exams

B Overview of the Questions, Scoring Guidelines,
and Sample Student Responses

& Computer Science A

@ Computer Science AB

Section 1 Answer Key and Percent Answering Correctly
Computer Science A

_item Correct Percent Correct by _Gradev _ Percent
N Answer 3 ' a1 Corr t

2w OPURE BEEEE OPBOE 220

Section I: Multiple Choice

Listed below are the correct answers to the multiple-
choice questions and the percentage of AP candidates who
answered each question correctly by AP grade, and the
total percentage answering correctly.

Section 1 Answer Key and Percent Answering Correctly
Computer Smence AB -

. - Total
tem Correct Percent Correct by Grade Percent
' 2 1 Correct

D
B
B
A
B
D
D
B~
B
£y
D
C
;*Ak :
B
A
C
SR
B
E-
B
B
D
2O

Section ll: Free Response

Student Preparation for the Exams
The 1999 AP Computer Science A and Computer

Science AB Examinations each had four free-response
questions, two of which were common questions
appearing on both examinations. Correct solutions,
scoring guidelines, and actual student answers are
provided on the following pages for each of the six
free-response questions. The guidelines can be read
as examples of what faculty consultants thought were
important in doing these problems.

1999 was a remarkable year for the AP Computer
Science program. It marked the initial delivery year of
the A and AB exams in a new programming language,
C++, and saw a record number of exams taken (almost
19,000 total; 12,067 A and 6,591 AB, up from approxi-
mately 10,500 in 1998 and 11,750, the previous high,
in 1997). The change in language allowed questions
that explored the new territory that C++ has opened up,
while resulting in an exam that graded very similarly to
past AP Computer Science Exams. In particular, while
one might expect dramatic differences in student
performance due to the language shift, this was not
observed. Students made conceptual errors similar to
those they made in the past and did not seem stymied
at all by the new delivery language.

As had been done in 1998, the exam contained
slightly different versions of an overlap question to
make the question work reasonably well for both A and
AB students. To accomplish this goal, a more detailed
algorithm was provided on part (b) of the A version of
the Case Study question than was provided on the AB
version. Looking at each exam overall, the A exam was
slightly more difficult than the 1998 A exam, with
question Al being easier and questions A2 and A4
being harder than similar questions in the past. The AB
questions were well balanced, with the question AB3
being a slightly easier than usual linked list problem.
See Chapter IV and the Technical Corner of the AP
website (www.collegeboard.org/ap/techman) for
information on how the difficulty level of questions
is handled when determining AP grade boundaries
each year.

In general, students need _to;Be familiar with the
member functions and operators available to them
for the AP classes. Teachers should teach these classes
early, as well as introduce other classes, to ensure that
students are comfortable with writing constructors and
member functions.

Students should be encouraged to use abstractions
that are provided. Some excellent examples of this
principle are using the overloaded relational operators
for apstrings (e.g., ==, <, >) instead of performing
character-by-character comparisons and the private
helper functions GetDigit, AddSigDigit,
ChangeDigit, and NumDigits in the Large
Integer Case Study. Invariably, when students try to
code these themselves, they get them wrong.

On array questions, where students are provided
with an explic;it number-of entries to examine, they
typically confuse that number with the length of the
array (e.g., numStudents vs. roster. length ()
on Question Al, part (a)). Students also lose points by
being off by one in their loops which traverse the array,

e.g., using

for (i = 0; 1 <= numStudents; i++)
instead of

for (i = 0; 1 < numStudents; 1++)

on Question Al. Students should also be discouraged
from arbitrarily resizing arrays. If a question indicates
that there is enough room to store the data (as in
Question Al and A2), there’s no need to resize. Benign
resizes were not reasons to lose points on the 1999
exam, but destructive resizes did lose points.

Students are also expected to be able to read from
external files. Files on AP Exams are well formatted, so
there’s almost no need to resort to strange loops or
member functions to read the data. A file (infile)
that contained an arbitrary number of lines of text
where each line contained a name (as an apstring), an
age (as an int), and a QPA (as a double) would be read
as follows:

while (infile >> name >> age >> gpa)

{
process name, age, and qgpa

}

Note that no reference is made to ecf, and the reads
are happening as extractions in the loop guard.

Overview of the Questions, _
Scoring Guidelines, and Sample
Student Responses

The answers presented here are actual student responses
to the six free-response questions on the 1999 AP
Computer Science Examinations. The students gave
permission to have their work reproduced at the time
they took the exam. These responses were read and
scored by the question leaders and faculty consultants
assigned to each particular question and were used as
sample responses for the training of faculty consultants
during the AP Reading in June 1999. The actual scores
that these students received, as well as a brief explana-
tion of why, are indicated.

You will find a rubric for each question, followed by
three sample solutions illustrating the application of the
rubric, with commentary. In addition to the rubrics,
each faculty consultant was provided with a Usage

Sheet, which is printed below. Usage‘deductions are
taken for egregious syntax violationsTthe maximum
deduction for even the worst error is 1 point), and can
only be deducted if the part has earned credit. In
general, no usage points are deducted for usage mistakes
for which evidence of understanding appears elsewhere
in the problem. For example, if there are no variables
declared in a problem, then usage points may be
deducted. However, a missing declaration in the
presence of other declarations does #oz lose points.
Some usage errors may be addressed specifically in
rubrics with points deducted in a manner different -
from that indicated on the “general” Usage Sheet.

Text of the questions, scoring guidelines, and
canonical solutions can also be accessed from
the AP Computer Science website at
www.collegeboard.org/ap/computer-science.

1999 Usage Sheet

In general, no usage points are deducted for usage mistakes for which evidence of understanding appears

elsewhere in the problem. For example, if there are 70 variables declared in a problem, then usage points may

be deducted. However, a missing declaration in the presence of other declarations does 7or lose points. Also,
you should not take off usage points for syntactically correct code that goes beyond the AP subset (e.g., using
printf or scanf, or returning 0 instead of false for a bool).

Usage points can only be deducted if the PART has earned credit. Some usage errors may be addressed speci-

fically in rubrics with points deducted in a manner other than indicared on this sheet.

Non-penalized errors

Case discrepancies, unless
confuses identifiers

(e.g., link/next)
Missing ;’s

Missing { }’s where indentation
clearly conveys intent

Default constructor called with

parens, e.g., BigInt b()

obj .Func instead of obj.Func ()
Loop variables used outside loop

[r, c] instead of [r] [C]

= instead of == (and vice-versa)
Missing ()’s around if/while tests

<< instead of >> (and vice-versa)

*foo.data instead of (*foo) .data

Minor errors (1/2 point)

Misspelled/confused identifier

No variables declared
MemberFunction (obj) instead

of obj.MemberFunction()

Major errors (1 point)

Reads new values for parameters
(write prompts part of this point)

Function result written to output
Type error (uses type name instead

of variable identifier)

Param.FreeFunction() instead
of FreeFunction (param)

Void function rerurns a value
Modifying a const parameter
Unnecessary cout << “done”

Unnecessary cin (to pause)

167 |

Computer Science A: Question 1

Overview

A “standard” one-dimensional array question which
measures the student’s facility with one of the most
basic data structures, an array (apvector) of records
(structs). Overall, most students did very well on this
question. The mean score was 5.51 with 37 percent of
the students scoring an 8 or 9. The question discrimi-
nated best at the 2-3 grade cutpoint.

In part (a), students were asked to traverse the data
structure and perform a simple computation to set the
GPA field for each student. They needed to identify the
case where credi tHours was zero, as this would
result in a divide-by-zero error. Many students neglected
to handle the zero case by failing to test appropriately.

In part (b), students were asked to ‘examine indi-
vidual fields of the struct and return an appropriate
value. There were very few errors on this part.

Scoring Guidelines

In part (c), students Wereﬁasl;ed to select the seniors
from the initial array and place them in a new array.
During the leaders’ meetings prior to the beginning of
the reading of the exam, it was determined that this part
of the question was ambiguous. No mention was made
as to whether the seniors array was to be viewed as a
“new” array containing only the new seniors, or if it
already had data to which the new seniors were to be
appended. It was decided that credit would be given
in either case. Thus, a student who failed to initialize
numSeniors to O was assumed to be appending
to an extant array, and students who initialized
numSeniors to 0 were assumed to be creating a
new array. This resulted in students not necessarily
losing any points for failing to initialize numSeniors
to 0 (as you would not do so if you were appending to
an extant list of seniors)..Of course, the student needed
to remain consistent in order not to lose points.

Part A: ComputeGPA (3 points)

+1 loop over all elements (must use loop variable to access array somewhere in loop body)

+1/2 attempt

+1/2 correct (use of roster . length () loses this half)

+1 correct computation in zero case
+1/2 test to identify hours == 0

+1/2 assignment of 0 and no further reassignment

+1 correct compuration in other/only case

Usage: -1

improper struct notation

Part B: IsSenior (2 points)

+1 attempt (looks at only 1 student record and “examines” both creditHours and GPA)

+1 correct (includes return, correct struct notation, uses student instead of StudentInfo)

Part C: FillSeniorList (4 points)

+1 loop over all elements (must use loop variable to access array somewhere in loop body)

+1/2 attempt
+1/2 correct

+1 correct test to identify senior (function call must be perfect)

+1 assign appropriate array element to correct position in seniors

+1 correct value returned for numSeniors (ignore missing init)

Usage: -1/2 numSeniors/seniors redeclared as a local variable

Solutions and Samples: A1

Sample Student Response

Excellent Solution: 9 points

1. Assume that student records are implemented using the following declaration.

struct StudentInfo

{
apstring name;
int creditHours;
= double gradePoints; - . -
v double GPA;
}i

(a) Write function ComputeGPA, as started below. ComputeGPA should fill in the GPA data member
for the first numStudents recordsinits apvector parameter roster. A student’s GPA (grade
point average) is computed by dividing' gradePoints by creditHKours. The GPA for a student with
0 credit hours should be set to 0. R 2

Complete function ComputeGPA below. Assume that ComputeGPA is called only with parameters that
satisfy its precondition.

void ComputeGPA (apvector<StudentInfo> & roster, int numStudents)
// precondition: roster contains numStudents records,

// 0 < numStudents £ roster.length(), in which the

// name, creditHours and gradePoints data members

// have been initialized.

// postcondition: The GPA data member for the first numStudents records
// in roster has been calculated.

2

int count/’

‘{or (cuun_f :O/' Counl < pum StuJenTS/' Courff#-g

¢

rF(rosterLcount J.creditHours == O>
fosier[counf‘zg G’pA = O/"

l
else roster[umf), GPA =rosterlconit], 3roa’epa,',7i5 J rostevleount, cr&d[‘éﬁw@'

3
3

(b) Write function IsSenior, asstaried below. IsSenior shouldreturn true if'the given student has
at least 125 credit hours and has a GPA of at least 2.0; otherwise, IsSenior shoufdreturn false.

For example:

student Result of the call kIsSenicLstudent)
name creditHours gradePoints GPA

King 45 171 3.8 false (notenough ;:redit hours)
Norton 128 . 448 35 true)

Solo 125 350 2.8 true

Kramden 150 150 1.0 false (GPA toolow)

Complete function IsSenior below.

bool IsSenior(const StbﬁdentInfo & student)
// postcondition: returns true if this student’s credit hours 2 125

// and GPA 2 2.0; otherwise, returns false

ff’i’urn((f}tudenf. credf‘&(—lours - = /RS) &4 CStUd@ﬂf- GFPA 2= D'OD

3

170

Solutions and Samples: A1

(c) Write function FillSeniorList, asstarted below. FillSeniorList determings which students in
the array roster are seniors and copies those students’ records to the array seniors. It should also
set the value of parameter numSeniors to be the number of seniors in the array seniors.

In writing FillSeniorList, younmycﬂ]ﬂnmuon IsSenior qmmﬁedxnpm1034kguwwthm
IsSenior works as specified, regardless of what you wrote in part (b).

Complete function FillSeniorList below. Assume that FillSeniorList is called only with
parameters that satisfy its precondition.

void FillSeniorlist(const apvector<StudentInfo> & roster,
int numStudents, apvector<StudentInfo> & seniors,

' int.& numSeniors)
// precondition: roster contains numStudents records,

// 0 < numStudents £ roster.length(),
/7 and seniors is large enough to hold all of
// the seniors’ records

Lo ‘

1nC ount, E .

for(count z0] count & numStudents | Covid +4)

H

F(TsSeniar (s osterLcountd)

d

Sen(or-g[ﬂqmje,\jo,fsj = rosterCCou;ﬂ,Z']j

Nym Seriors +4,

3

Good Solution: 6 points (5"/2, rounds up)

1. Assume that student records are implemented using the following declaration.

(a)

struct StudentInfo

{
apstring name;
int creditHours;
double gradePoints;
double GPA;

Y

Write function ComputeGPA, as started below. ComputeGPA should fill in the GPA data member
for the first numStudents recordsinits apvector parameter roster. A student’s GPA (grade-
point average) is computed by dividing gradePoints by creditHours. The GPA for a student with
0 credit hours should be set to 0.

Complete function ComputeGPA below. Assume that ComputeGPA is called only with parameters that
satisfy its precondition.

void ComputeGPx(apvector<StudentInfo> & roster, int HﬁmStudents)

// precondition: roster contains numStudents records,

r/ 0 < numStudents < roster.length(), in which the

// name, creditHours and gradePoints data members

/7 have been initialized.

// postcondition: The GPA data member for the first numStudents records
// in roster has been calculated.

2

fbr(ﬁﬁ+ C\=C3} O‘Sr\uhnf5+uékh\¥ﬁ§ 3Ci4¥:>

rogtes” [cx], GPA = roster[a]. Smdepmrﬁ‘fs/ roste[0]. cresit HW55

z
§

Solutions and Samples: A1

(b) WTrite function IsSenior, asstarted below. IsSenior shouldreturn true ifthe'éiven student has
at Jeast 125 credit hours and has a GPA of at Jeast 2.0; otherwise, IsSenior shouldreturn false.

For example:
student Result of the call IsSenior (student)
name creditHours gradePoints GPA
King 45 171 3.8 false (notenough creéithours)
- Norton 128 - 448 35 true
- Solo 125 350 2.8 true
Kramden 150 150 10 false (GPA toolow)

Complete function IsSeriior below.

b

-

bool IsSenior(const StudentInfo & student)
// postcondition: returns true if this student’s credit hours 2 125

// and GPA 2 2.0; otherwise, returns false

£ (student. creditHoors 2(2$)

{ . v
1€ (studenty. GPA > Z2.0)

L
§

return irue

§

else. |
‘ retorn falie]

(c) Write function FillSeniorList, asstarted below. FillSeniorList detefmines which students in
the array roster are seniors and copies those students’ records to the array sefiors. It should also
set the value of parameter numSeniors to be the number of seniors in the array seniors.

In wnting FillSeniorlist, you may call function IsSenior specified in part (b). Assume that
IsSenior works as specified, regardless of what you wrote in part (b).

Complete function FillSeniorList below. Assumethat FillSeniorList iscalled only with
parameters that satisfy its precondition.

void FillSeniorList(const apvector<StudentInfo> & roster,

/7
/1l
/7
//

]

{b) 1 out of 2. Poor chmce to use nested 1 £ 3 results m rmssma case. o
":(c) 3 our. of4 Incorrect call to IsSenlor e

int numStudents, apvector<StudentInfo> & seniors,
int & numSeniors)
precondition: roster contains numStudents records,
0 < numStudents £ roster.length(),
and seniors is large enough to hold all of
the seniors’ records

boo) o)
int b=0;
NomSeniocs =0;
for Cint (=0, 14 NumSTudents ; I‘H')
Z a = TsSenio— (roste]i]. r\arfw_:)
r‘@@==+r‘ue,>

i1

-

Seniots Ebj'ham" = O el - NS
TEniofS Lb {.ermd= SNavrs = /"GS'rr.’;r‘/‘l d.crepi ,-qur-r“
seaiors [b1, S‘Qd@%m\« =rosteri]. qrode, Bints:

\,))

SQY“\\C("S Ebj GGR’ roc..‘c('*k,.?- \:P,T)
NOM DENICTS ++;
g b++;
: Commenta ry: |
(3) 1% out of 3. Student commxts an array bounds error (<— mstead of <) and does not h’ dle
credl tHours ==0 case. ‘ r

174

Solutions and Samples: A1

o
L

Poor Solution: 3 points (2'/2, rounds up)

-

1. Assume that student records are implemented using the following declaration.

(@)

£

struct StudentInfo

{
apstring name;
int creditHours;
double gradePoints;
double GPA;

}:

Write function ComputeGPA, as started below. ComputeGPA should fill in the GPA data member

for the first numStudents recordsinits apvector parameter roster. A student’s GPA (grade
point average) is computed by dividing gradePoints by creditHours. The GPA for a student with
0 credit hours should be set to 0.

Complete function ComputeGPA below. Assume that ComputeGPA is called only with parameters that
satisfy its precondition. ~ . : -

RS

void ComputeGPA (apvector<StudentInfo> & roster, int numStudents)
// precondition: roster contains numStudents records,

// 0 < numStudents £ roster.length(), in which the

// name, creditHours and gradePoints data members

// have been initialized.

// postcondition: The GPA data member for the first numStudents records
/7 in roster has been calculated.

@({Cﬂ,&‘" H’awﬁc P O>

647§:.C>5

Clse

0, .
CPL= grdelons /ecedtNone |

rfL.\rr\ 6‘? P.' .\>

3 ,

(b) Write function IsSenior, asstarted below. IsSenior should returm true if the given student has
at least 125 credit hours and has a GPA of at least 2.0; otherwise, IsSenior shouldretum false.

For example:

student Result of the call ‘IsSenior {student)
name creditHours gradePoints GPA

King 45 171 3.8 false (notenough credit hours)
Norton 128 A 448 35 true i
Solo 125 350 2.8 true

Kramden 150 150 1.0 false (GPA too low)

Complete function IsSenior ‘below.

bool IsSenior{const StﬁdentInfo & student)
// postcondition: returns true if this student’s credit hours 2 125

// and GPA 2 2.0; otherwise, returns false

d

W (Crd i 2127 2 GPE » = 2.0)
rC)'.\f‘y\ -

176

Solutions and Samples: A1

(c) Write function FillSeniorList, asstarted below. FillSeniorlist deterrgixj_és which students in
the array roster are seniors and copies those students’ records to the array seniors. It should also
set the value of parameter numSeniors to be the number of seniors in the array seniors.

In writing FillSeniorList, you may call function IsSenior specified in part (b). Assume that
IsSenior works as specified, regardless of what you wrote in part (b).

Complete function FillSeniorList below. Assumethat FillSeniorList iscalled only with
parameters that satisfy its precondition. :

void FillSeniorList (const apvector<StudentInfo> & roster,

// precondition:”

//
1/
/7

z

int numStudents, apvector<StudentInfo> & senlors,
int & numSeniors)

roster contains numStudents records,

0 < numStudents £ roster.length(),

and seniors is large enough to hold all of

the seniors’ records

IL C"W‘l'\ Q"Lv\}cn% - TS SC‘N()‘D
Os—er Lgeﬂ‘,cfg)

17N S?hl"p\‘s- r£512¢€ Cc"e“rb"fn ‘6“41‘)" <>> 7

€ My m

[Commentafy

(a) Y2 out'of 3. Generously earns the two points for identifying and calculating GPA in the zero and non-
' zeto case but has two usage errors: improper (non-existent) struct notation (-1), and returns GPA when
_the function is void -'72). Thus, 2 pomts were earned and there were 1'/> usage deductions on this part,

for a net. ofllv
(b) 2 out of 2,
. © 0 out of 4.

Computer Science A: Question 2

addition, many students did Qo;f.correctly handle the

Overview

This question, a harder one-dimensional array question,
asked the students to reason about an ordered array of
strings. Students needed to both understand the string
abstraction and develop correct algorithms for manipu-
lating the ordered array. The solution-space for this
question was very large, making it both very interesting
and very difficult to grade. The question had a mean of
3.72 (4.89 if 0’s and —’s are not counted) and a very
even distribution of scores, making it an effective
discriminator across all grade cutpoints.

In part (a), the student was required to return the
“insertion position” of a given string in the ordered
array. Many students checked for equality only (a
standard search) instead of what was required. As is
often the case with array questions, students also went
beyond the valid region of the array (by looping to
wordList.length () instead of numWords). In

apstring abstraction, attempting to use invalid
comparisons (e.g., strcmp) instead of valid
apstring member functions and operators (e.g.,
==). In the same vein, students also resorted to a
character-by-character comparison of strings, which was
rarely done correctly.

In part (b), the student was asked to (potentially)
insert a new word in the correct position in the ordered
array, shifting elements as appropriate. Many students
failed to properly exploit the WordIndex abstraction
that part (a) afforded them in solving part (b). Another
common error was to use the element at the position
returned by WordIndex to determine whether to
insert the new element. If this position was equal to
numWords, a comparison to an array location whose
contents were unknown was being performed. Finally,
many students inserted the new word multiple times
or had problems shifting data in the array after a
correct insertion.

178

Scoring Guidelines: A2

Scoring Guidelines _

Part A: WordIndex (4 points)

+2 find and return insertion point or current location for any word >= first item and <= last (must
have loop/recursion and comparison of wordList [1] with word)
+1 attempt
+1 correct

+2 boundary cases
+1 determines if before the first item (returns 0) OR after the last item (returns numWords)
+1 correct value returned on both boundaries (including empty list)

Note: a solution that consistently treats the list in decreasing alphabetical order can get both boundary
case points (as well as first attempt point)
Part B: ITnsertInOrder (5 points)
+1 guard against insertion if and only if word is already in the list
+1/2 attempt (insufficient to examine only one element or only compare WordIndex to 0)
+1/2 correct S —
+2 shift list items or sort list
+1 attempt (must use a loop/recursion to copy multiple list items from at least two different
source locations to at least two different destination locations)
+1 correct items in positions [numWords down to WordIndex (word, wordList,
numWords) + 1] are modified
+11/2 locate position and insert word exactly once (insert almost always needs to follow shift)
+1/2 attempt to locate or insert word
+1 correct
+1/2 increment numWords at most once and in conjunction with an insert attempt
Usage:
-1 cout << result
-1 destructive resize (benign resize loses 0 usage points)
-1/2 WordIndex(,) =
-1/2 WordIndex (const apstring & word,
const apvector<apstring> & wordList, int numWords)
-1/2 vector access as . instead of []
-1/2 temp variable declared improperly (e.g., wrong type or length)
-0 no variables declared
Note: assignment to word not allowed (loses “correct”)

179

Sample Student Responses

Excellent Solution: 9 points

(a) Write function WordIndex, as started below. The array wordList contains numWords strings
in alphabetical order. If word is already in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in
wordList that comes after word in alphabetical order; it should return numWords if word

= comes after all of the strings in wordList in alphabetical order.

o
: For example, assume that array wordList is as follows:
0 1 2 3
fapple® f"berry' *pear® *Juince?®
Function Call Value Returned

WordIndex(*air®, wordList, 4)
WordIndex{"apple®, wordList, 4)
WordIndex(®"orange®, wordList, 4)
WordIndex("raspberry®, wordList, 4)

eNOoo

Complete function WordIndex below. Assume that WordIndex is called only with parameters that
satisfy its precondition.

int WordIndex(const apstring & word,

const apvector<apstring> & wordList, int numWords)
// precondition: wordlList contains numWords strings in alphabetical
// order, 0 £ numWords < wordList.length{)

¢

nt ox= O}
N‘M]\e((% Lr\um\‘v\f"f—\g (&i(wgrc\f_?y*[xj4\00rd>>
¢ 7(44;
A
ETS et v
(e7u X;

Solutions and Samples: A2
ey (b) Write function InsertInOrder,. as started below. The array wordList contains numWords
strings in alphabetical order. If the string word is already in wordList, InsertInOrder should
not change any of its parameters. Otherwise, it should insert word into wordList in alphabetical order
(i.e., all values greater than word should be moved one place to the right to make room for word), and

it should also increment numWords by 1. Assume that wordList.length() is greater than
numWords.
In the examples below, numWords = 3 before the following call is made.

g InsertInOrder ("pear", wordList, numWords)

Before the call After the call

» wordList wordList numWords
" appleu f berryu nquinceu " appleu uberry] npearu nquinceu 4
" applen uberryu npearn " appleu ||berryn upearn 3
nappleu nfign npeachu R napplen nfign upeachu npearu 4
"quince" "raisin" "tart" = "pear" "quince" "raisin" "tart" 4

In writing InsertInOrder, you may include calls to function WordIndex specified in part (a).
Assume that WordIndex works as specified, regardless of what you wrote in part (a).

Complete function InsertInCrder below. Assume that InsertInOrder is called only with
parameters that satisfy its precondition.

void InsertInOrder (const apstring & word,
apvector <apstring> & wordList, int & numWords)
// precondition: wordList contains numiWords strings in alphabetical

/7 order, 0 £ numWords < wordList.length()

// postcondition: if word was already in wordList, then wordList and
// numWords are unchanged;

!/ otherwise, word has been inserted into wordList in
/7 sorted order, and numWords has been incremented by 1

int X, index;
for(x= 0). X< num Wor &5}')(44’)
H(word List D= = wor &)

(e‘mm)‘

index = Word In d\ex(wm’ﬁ, wordlist, numWer dS)}

‘Q)f(X= ﬁumlﬂové&}f ¥> indé€x) Y--)
wm(ﬁL;'S\LLx]: woﬁﬁLiS+{x’[ji

wordListGindex = word;

o midord st

182

Solutions and Samples: A2

Good Solution: 6 points
2.

— -

(a) Write function WordIndex, as started below. The array wordList contains numWords strings
in alphabetical order. If word is already in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in
wordList that comes after word in alphabetical order; it should return numWords if word
comes after all of the strings in wordList in alphabetical order.

For example, assume that array wordList is as follows:

= 0 i 2 3)
apple® "berry”* ‘pear"® "quince*®
Function Call Value Returned

WordIndex("air®, wordList, 4)
WordIndex{"apple®, wordList, 4)
WordIndex (®"orange®, wordList, 4)
WordIndex ("raspberry®, wordList, 4)

OO

Complete function WordIndex below. Assume that WordIndex is called only with parameters that
satisfy its precondition.

int WordIndex(const apstring & word,

const apvector<apstring> & wordlList, int numWords)
// precondition: wordList contains numWords strings in alphabetical
/7 order, 0 € numWords < wordList.length()

g i
.. 0 ;Lm}“bjx)fﬁ,‘ l'hL)

Po ('Y
rf 2 ud =7 Jord Lict (i)

| {aordiist 0] Dueed))
(et /7

183

(b) Write function InsertInOrder, as started below. The array wordList cofitains numWords
strings in alphabetical order. If the string word is already in wordList, InsertInOrder should
not change any of its parameters. Otherwise, it should insert word into wordList in alphabetical order
(i.e., all values greater than word should be moved one place to the night to make room for word), and
it should also increment numWords by 1. Assume that wordList.length() is greater than
numWords.

In the examples below, numWords = 3 before the following call is made.

InsertInOrder {"pear®, wordlList, numWords)

Before the call After the call
T wordList ' wordList " numWords
apple® ®“berry® “quince-® “apple® "berry® °"pear® °"guince® 4
"apple” "berry® *"pear"® *apple® "berry® °“pear”® 3
*apple® *"fig® ‘"peach” “apple® °fig®" "peach®" “pear® 4
"quince" "raisin® "tart® "pear® "guince® “raisin® "tart® 4

In writing InsertInOrder, you may include calls to function WordIndex specified in part (a).
Assume that WordIndex works as specified, regardless of what you wrote in part (a).

Complete function InsertInOrder below. Assume that InsertInOrder iscalled only with
parameters that satisfy its precondition.

void InsertInOrder(const apstring & word,
apvector <apstring> & wordList, int & numWords)
// precondition: wordList contains numWords strings in alphabetical

// order, 0 £ numWords < wordList.length{()

// postcondition: if word was already in wordList, then wordList and

/7 numWords are unchanged:;

// otherwise, word has been inserted into wordList in

// sorted order, and numWords has been incremented by 1
(¢ ‘.

Ul I;{M/%s' s Wored Tuder (W"e Wordlis?, We “/""/:’),

i
AL
< Pl gordl s ins PosTfz. werd)
Word List, f;,)? 2 (wordlis#, /fm’z)rﬁ + />;
e (G < v, vgthl); € 2ot i--)
ardtis (2 w00
Word s/ insfos] = wered

S
E //f&wyéncé/uu\

Solutions and Samples: A2

Commentary: ‘

(a) 3 out of 4. Student does not get all boundaxy cases Correct. o ,

(b) 3 outofs: Student Ioses correctness /2 point if word is already thererand correctness pomt on. shtft .
- The student also does not increment numWords after inserting.’ Note that the resize that is performed IS
non- destructxve (benign) and so dces not Eose any points; ‘

Poor Solution: 3 points

(a) Write function WordIndex, as started below. The array wordList contains numWords strings
in alphabetical order. If word is already in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in
wordList that comes after word in alphabetical order; it should return numWords if word
comes after all of the strings in wordList in alphabetical order.

For example, assume that array wordList is as follows:

o 0 1 2 3
) *apple® *berry® ‘pear"® "quince-*
Function Call Value Returned

WordIndex(®air®;, wordList, 4)
WordIndex(®"apple®, wordList, 4)
WordIndex("orange®, wordlList, 4)
WordIndex{"raspberry®, wordList, 4)

S NOoOo

Complete function WordIndex below. Assume that WordIndex is called only with parameters that
satisfy its precondition.

int WordIndex(const apstring & word,

const apvector<apstring> & wordlList, int numWords)
// precondition: wordList contains numWords strings in alphabetical
// order, 0 € numWords < wordList.length()

3

]

}V\'* X/

forl= O/‘ X (:numwcrd;fj‘ X++)
y 5 Cwvord 7WO(’0UCI+C-X3}

1

ceturn Cxrl))
elex 1 f Cdord = =Woerd I+ x71)
et urn (x);

2lse £ (word Swerd 1ig# Cx])
(Lrurn ()(-*U/'

186

Solutions and Samples: A2

(b) Write function InsertInOrder, as started below. The array wordList contains numWords

strings in alphabetical order. If the string word isalready in wordList, InsertInOrder should
not change any of its parameters. Otherwise, it should insert word into wordList in alphabetical order
(i.e., all values greater than word should be moved one place to the right to make room for word), and
it should also increment numWords by I. Assume that wordList.length() is greater than
numWords.

In the examples below, numWords = 3 before the following call is made.

InsertInOrder({"pear®, wordList, numWords)

Before the call After the call

wordlList . wordList numWords
"apple” °"berry®" °"quince” "apple® *"berry® ®"pear® "quince-* 4
"apple” °"berry® °pear"” *apple®” °"berry® °"pear"® 3
"apple® "fig®" °"peach"” . rapple® *"fig® "peach®” *“pear-® 4
"quince" "raisin® "tart® *pear® "quince® "raisin®" “tart® 4

In writing InsertInOrder, you may include calls to function WordIndex specified in part (a).
Assume that WordIndex works as specified, regardless of what you wrote in part (a).

Complete function InsertInOrder below. Assume that InsertInOrder is called only with
parameters that satisfy its precondition.

187

void InsertInOrder(const apstring & word, ‘ .
apvector <apstring> & wordList, int & numWords)
// precondition: wordList contains numWords strings in alphabetical

// order, 0 £ numWords < wordList.length()

// postcondition: if word was already in wordList, then wordList and
// numWords are unchanged; ‘

/7 otherwise, word has been inserted into wordList in
/7 sorted order, and numWords has been incremented by 1

¢ ind Yy Y, 2
’go v ‘C%: 0/' X <= wofd“sjf-/eng-'/h‘) Xt+)
-+ CWO(d/ist LxJ< word)
1 ‘(:oc y CX)')(= WOrd\is+- /E’mg{-h)‘)"hy
S d ['st Lx+17 = wordlistCxd;
3) : ’ - -
wordlit e word) -

Lot (§70; <= word Iist-lengthy x11)
£ word list ij7w0rd’)
"(or(zi%) 2 <= wordlisf. /€n3¥19 2- ")
Gwordi<tL x- 11z word [(sTLX3)

iord [isHLx3 = wordl)

3 5

Commentary:

(a) 1 out of 4. Student earns only the general attempt point.
(b) 2 outof 5. Student earns only the attempt points.

Computer Science A: Question 3;
AB: Question 2

Overview

This question involved reasoning about the AP Com-
puter Science Large Integer Case Study. In particular,
students were required to add a member function to the
BigInt class as well as implement division. As a
division question using repeated subtraction had been
asked on the 1997 exam, students were constrained to
use binary search in their division algorithm for part (b)
of this exam. It was explicitly prohibited to use any
algorithm other than binary search, so a “broader than
textbook” interpretation of binary search was used to
determine whether a student’s solution was headed
down a potentially correct path-and thus .:eould be
graded. :

As was the case in years past, many A students (just
under 40) either omitted or zeroed the entire question,
resulting in a mean score of 2.88 (but this rises to 4.70
if 0’s and —’s are not counted). In contrast, only 17.5
percent of AB students omitted or zeroed the question,
resulting in a mean of 3.75 for AB students (4.56
without 0’s and —’s). As was done on a non-case study
question in 1998, the students taking the A exam were

provided with a more specific algori"t.hmic hint in the
construction of their code on part {b) than were the
students taking the AB exam. This explains the higher
mean for A students when 0’s and —’s are not counted.
This question discriminated well at the 3-4 grade
cutpoint on the A exam and the 3-4 and 4-5 grade
cutpoints on the AB exam.

Since the algorithm for part (a) was very tightly
prescribed on both exams, most students did well.
Common errors included loop bounds that were
incorrect or loops that went in the wrong direction.

It was acceptable to access the digits directly (instead
of using abstractions such as GetDigit or
ChangeDigit), but students who did so usually
neglected to compensate for the fact that the digits are
stored as an array of characters, not integers.

In part (b), the A students-were aided by the algo-
rithmic hint and so tended to write solutions that were
closer to the mark. Most AB students seemed to have a
difficult time translating the invariant into working
code that moved the boundaries of the search appropri-
ately. There were also many different errors with respect
to calling the Div2 () member function written in
part (a).

Scoring Guidelines

Part A: Div2 (4 points)
+1/2 init carryDown (must later attempt to-assign value based on a digit)
+1 loop over digits
+1/2 begin at most significant end (e.g., NumDigits () - 1)
+1/2 correct
+1 compute and store current digit (repeatedly)
+1 compute and store carryDown (repeatedly)
+1/2 normalize quotient (must have attempted to change a digit)
Part B: DivPos (and operator/) (5 points)

In order to receive any points for Part B, must repeatedly
— compute the approximate midpoint

OR

— potentially update both bounds based on a comparison .

Usage:

+1/2
+1/2
+1 1/2

+1
+1
+1/2
-1/2
-1/2

declare and init low, high, and mid appropriately
loop until quotient found

compute and store mid
+1/2 sum bounds
+1 divide by 2 and store (integer division is not defined for BigInts)

identify which side of interval to search next
correctly assign to next value of high/low
return quotient

improper syntax on Div2 call

BigInt.NumbDigits () ;

190

Solutions and Samples: A3 and AB2

Sample Student Responses

Excellent Solution: 9 points (82, rounds up)

3. This question involves reasoning about the code from the Large Integer case study. A copy of the code is
provided as part of this examination.

(a) Write anew BigInt member function Div2, as started below. Div2 should change the value of
the BigInt to be the original value divided by 2 (integer division). Assume the BigInt is greater than
or equal to 0. One algorithm for implementing Div2 is:

I. Initialize a variable carryDown to 0.
2. For each digit, d, starting with the most significant digit,

2.1 replace that digit with (d / 2) + carryDown

2.2 let carryDown be {d % 2) *5 : ~
3. Normalize the result
Complete member function Div2 below.

void BigInt::Div2{()
// precondition: BigInt 2 0

¢

ke CarryDown = O,

“:Or (\\'\‘& X = M\/M“““B‘-Si*&’k . ><.>T-4Q,’ &,e__)
j sy +impb? Gi,+b‘ "\‘(x)
=

Chan
ange Diget «me s /R) % CacryDouan));
C&rr\/h Ll =

/

o

191

£ (b) Write function DivPos, as started below. DivPos returns the quotient of the infeger division of
e dividend by divisor. Assume that dividend and divisor are both positive values of type
BigInt.)

For example, assume that bigNuml and bigNum2 are positive values of type BigInt:

bigNuml biagNum2 DivPos (bigNuml, bigNum2)

18 9 2
17 2 8

8714 2178 4
9990 999 10

There are many ways to implement division; however, you must use a binary search algorithm to find the
quotient of dividend divided by divisor in this problem. You will receive no credit on this part if
you do not use a binary Search algorithm.

One algorithm for implementing division using binary search is as follows:

1. Initialize low to 0 and high to dividend.
2. For each iteration,

2.1 compute mid = (low + high + 1)
2.2 divide mid by 2

23 if mid * divisor islargerthan dividend (mid istoo large to be the quotient) then set
high equalto mid - 1lelse set low equalto mid.

3. When low == high the search terminates, and you should retumm low.

182

Solutions and Samples: A3 and AB2

In writing function DivPos, you may call function Div2 specified in part (a). Assumie that Div?2
works as specified, regardless of what you wrote in part (a). You will receive no crediron this pan if you
do not use a binary search algorithm,

Complete function DivPos below. Assume that DivPos iscalled only with parameters that satisfy its
precondition.

BigInt DivPos(const BigInt & dividend, const BigInt & divisor)
// precondition: dividend > 0, divisor > 0

BiaTnsr low (0);

T’;s%'ln{ h%‘n(dw{di,\c}},‘
B"SI 1t g .
while (low B \.‘3\,\)

.
¢

™ idz (low -M-\:g\',\ +D; ,
{’“*'d : DNQ; s * -
Wf ((midx diq<55r3>c{‘\q{d;_ncl) ’k

' .
/

P\\'s‘na (M{A~
tise
3 *D‘-J: \"v-\ldl

Ce e Llo@)‘;

Commentary:
~(a) 3!/2 out of 4. Student loses loop correctness '/ point due to x++ instead of x- - .
(b) 5 out of 5. Standard solution, albeit with some missing ()’s on the call to the Div2 member function (an

unpenalized usage error).

~ Good Solution: 6 points

—

2. This question involves reasoning about the code from the Large Integer case study. A copy of the code is.
provided as part of this examination.

(a) Write anew BigInt member function Div2, as started below. Div2 should change the value of
the BigInt to be the original value divided by 2 (integer division). Assume the BigInt is greater than
orequalto 0. One algorithm for implementing Div2 is:
1. Initialize a variable carryDown to 0.

2. Foreach digit, 4, starting with the most significant digit,
2.1 replace that digit with(d / 2) + carryDown
2.2 let carryDown be (d % 2) * 5

3. Normalize the result.

Complete member function Div2 below.

void BigInt::Div2()
// precondition: BigInt 2 0

{

wT o] Pown "O;

Lor (ot digit = myNuum Digr -1 digit > = O digit =) ¢
LW{DTg\‘\'(dzﬁi'%’)' (o Diop & Bigi+] Q)‘* Coua POwWN Y
coamliomn =(oD gl °fe 3) % 5

B

Nyralize Q/\

194

Solutions and Samples: A3 and AB2

(b) Write a definition to overload the / operator, as started below. Assume that dividend and divisor
are both positive values of type BigInt.

For example, assume that bigNuml and bigNum2 are positive values of type BigInt:

biqNuml @ biaNum2 d\/gigNuml / bigNum?
¢ >
\

AW
18 9 2
17 2 8
8714 2178 4
9990 999 10

There are many ways to implement division; however, you must use a binary search algorithm to, find the _
quotient of dividend divided by divisor in this problem. You will receive no credit on this part if

you do not use a binary search algorithm.

One possible algorithm for implementing division using binary search is as follows:

Let low and high represent a range in which the quotient is found.

Inivalize low 10 0 and high to dividend.

For each iteration, compute mid = (low + high + 1), divide mid by 2, and compare

>
mid * divisor with dividend to maintain the invariant that low £ quotient and

high 2 quotient.
v When low == high, the quotient has been found.

In wniting function operator/ you may call function Div2 specified in part (a). Assume that Div2
works as specified, regardless of what you wrote in part (a). You will receive NO credit on this part if you do

not use a binary search algonthm.

s
195 |

Complete operator/ below.Assume that operator/ iscalled only with paramelers that satisfy its
precondition,

BigInt operator/ (const BiglInt & dividend,
? // precondition: dividend > 0, divisor > 0

bgint 1oV (0) high = Maderd , ore (1)
h\g'lwt lal
while Clow V= V\YJY\)E
witd = Jlhw tlagh +ove
wid. Dival)
vE ((wid 2 dduy 7’9\\\’\7‘1&/\9()
Wigh = i
C elee tow= wid
3 o ‘ .
rehman Wigh

const BigInt & divisor)

3

,Commentary

(a) 2 out of 4, Usmu myD:Lg:L ts costs thxs student, ds dths are. stored as an array of char, not int. Even
o xfmyDlgl ts W

ere used correctly, the faxlure to store the ¢ current dlglt means that the CarryDown
cot ,putam o1 's‘tamted and thus Would be i incorrect.

£5. 'tudcnt mcorrectiy updates hlgh

196

Solutions and Samples: A3 and AB2

Poor Solution: 3 points (2'/2, rounds to 3)

-

3. This question involves reasoning about the code from the Large Integer case study. A copy of the code is
provided as part of this examination.

(a) Writeanew BigInt member function Div2, as started below. Div2 should change the value of
the BigInt to be the original value divided by 2 (integer division). Assume the BigInt is greater than
or equal to 0. One algorithm for implementing Div2 is:

l. Initialize a variable carryDown to 0.
2. For each digit, 4, starting with the most significant digit,
T 2.1 replace that digit with (d / 2) + carryDown . .
2.2 let carryDown be (d $ 2) * 5

3. Normalize the result

Complete member function Div2 -below. - -

void BigInt::Div2 ()
// precondition: BigInt 2 0

2
m’r camsdwﬂv 0,

Iny len = Numbia n,()
NT &)
\s’\lr K;

forle=teniykezo k=)

3

197

o

(b) Write function DivPos, as started below. DivPos returns the quotient of the iffteger division of

dividend by divisor. Assumethat dividend and divisor are both-positive values of type
BigInt.)

For example, assume that bigNuml and bigNum2 are positive values of type BigInt:

bigNuml bigNum2 DivPos (bigNuml, bigNum2}
18 9 2
17 2 8
8714 2178 4)
9990 999 10

There are many ways to implement division; however, you must use a binary search algorithm to find the
quotientof dividend divided by divisor in this problem. You will receive no credit on this part if
you do not use a binary search algorithm.

s

One algorithm for implementing division using binary search is as follows:

1. Initialize low to 0 and high to dividend
2. For each iteration,

2.1 compute mid = (low + high + 1)
2.2 divide mid by 2

23 if mid * divisor islargerthan dividend (mid istoo large to be the quotient) then set
high equalto mid - 1lelse set low equalto mid.

3. When low == high the search terminates, and you should return low.

198

Solutions and Samples: A3 and AB2

In writing function DivPos, you may call function Div2 specified in part (a). Assume that Div2
works as specified, regardless of what you wrote in part (a). You will receive no credit onThis part if you
do not use a binary search algorithm.

Complete-function DivPos below. Assume that DivPos is called only with parameters that satisfy its
precondition.

BigInt DivPos{const BigInt & dividend, const BiglInt & divisor)
// precondition: dividend > 0, divisor > 0

iy low=0; . .

e ig= dindend

iy

Ujh[,\& Clow = h‘%h ‘ o

LS V'Hd':— UUVJ“"-‘h'\ﬁ_}%"'\) . O
Llrid % diser) 7 dividenc
k thh = (ﬂ‘f‘ i .
| <ls¢ o = mid,
3

return V0w

E

199

Computer Science A: Question 4;
AB: Question 1

Overview

This question was substantively different from what
would have been asked in Pascal. Students were pro-
vided a context for a class, given the declaration of the
class, and asked to implement a constructor and two
member functions for the class. While there was a lot of
reading, the intent was to provide a real-life example in
which to embed an interesting programming problem.
The amount of reading and the relative position of this
question on the A exam resulted in a comparatively low
mean of 1.97 (this improves to 3.41 without the 0s and
—’s). The question discriminated best at the 4-5 grade
cutpoint on the A exam. AB students fared much better,
with a mean of 4.60 and a very even distribution of
scores, making this an effective discriminator across all
grade cutpoints for the AB exam.

In part (a), the student was asked to write a construc-
tor for the Quilt class that required reading data from a
file. Many students had no idea how to read data from
a file under control of a loop, or how the extraction
operator (>>) worked. Students and teachers are

strongly encouraged to exam_in;é. the canonical solution
for this question to see how to properly read data from
an external file. 4

In part (b), the student was asked to supply the body
of the loop for the PlaceFlipped () member
funcrion. Most students received full credit for this part,
or were off by one in their index calculations. As it was
unclear from the problem specification, and not
clarified by the example provided, a solution was
deemed correct if the student reflected the block about
its horizontal axis, or rotated it 180 degrees.)

In part (c), the student was asked to alternately plaée
blocks and flipped blocks into a matrix that represented
the entire quilt. Again, as it was unclear from the
problem specification, and not clarified by the example,
full credit was given to both checkerboard alternation
and alternation that resuliéd in alternating vertical
stripes if there were an even number of columns.
An alternating row pattern was not given full credit.
Most students received some credit on this part, with
the most common errors being confusion between the
block indices and the larger matrix indices, forgetting to
declare a local matrix to return, and forgetting to return
the matrix once finished.

200]

Scoring Guidelines: A4 and AB1

Scoring Guidelines)

Part A: Quilt::Quilt (3 points)

+1/2 read row and column dimensions from inFile
Note: consistent use of cin, or no attempt to extract from inFile, loses this !/2 point and
P
both “read from inFile into my Block [r] [c]” /2 points (see below)

+1/2 resize matrix appropriately

+1 loop over rows and columns
+1/2 awempt
+1/2 correct

+1 read from inFile into my Block[r] [c¢] (consistent stream misuse loses both !/2 points)
+1/2 attempt
+1/2 correct

Usage: -1 incorrectly overwrite myRowsOfBlocks/myColsOfBlocks

-1/2 var >> inFileorvar << inFile

Notes: >> // skips whitespace o
inFile.get(); / / reads and returns next character, including whitespace (can be OK)
inFile.get (ch); // reads next character into ch, including whitespace (can be OK)
inFile.ignore (num, "\n’); // can be OK
getline(inFile,aString)}; // can be OK
getch(}; // NOTOK
getchar({); // NOT OK

>> endl; // NOT OK

Part B: Quilt::PlaceFlipped (1 poini)

+1/2 attempt from myBlock into gmat

+1/2 correct (reflection abourt X or rotation OK, but reflection about Y axis loses this half)

Part C: Quilt::QuiltToMat (5 points)

+2 declaration/sizing/return of local matrix

+1/2 attempt
+1 correct
+1/2 return matrix (matrix must be declared to get this half)

+1 loop over entire structure
+1/2 attempt
+1/2 correct

+2 PlaceBlock/PlaceFlipped alternation
+1 attempt at alternation (within loop context)

+1 consistent and correct (matrix must be declared to get this point)

Notes: checkerboard OK
stripes that result from flipping every other block OK

T 1

201 |

Sample Student Responses
Please note that only the portions of the question that contain student responses have been feproduced here. For the
entire question, see pages 82-86. V

Excellent Solution: 8 points

(a) Write the code for the constructor that initializes a quilt, as started below. The constructor reads the block
pattern for the main block from a file represented by the parameter inFile. You may assume the file is
open and that the file contains the number of rows followed by the number of columns for the block,
followed by the characters representing the pattern. For example, the file pattern, which contains the
pattern for the first block in the quilt shown above, would look like this:

45

X...X%

XX,
-X. .
X

The constructor also sets the number of rows and columns of blocks which make up the entire quilt in the
initializer list. S * -

Complete the constructor below. Assume that the constructor is called only with parameters that satisfy its
precondition.

Quilt::Quilt(istream & inFile, int rowsOfBlocks, int colsOfBlocks)
: myBlock (0, 0), myRowsOfBlocks (rowsOfBlocks),
myColsOfBlocks (colsOfBlocks)
// precondition: inFile is open, rowsOfBlocks > 0, colsOfBlocks > 0
// postcondition: myRowsOfBlocks and myColsOfBlocks are initialized to

// the number of rows and columns of blocks that make up
/7 the quilt; myBlock has been resized and

// initialized to the block pattern from the

/7 stream inFile. .

§. WY tow, co) Y

AN ‘%""1"» \
nFile S 0w 3 ol

]
gy Bleck o sestre (fou, co\ Y 3
Qor' L."‘}’ K:O‘, ~ L TOowWw) W

§ Gorlinvyzoy ye V1Y)
%

Abile >3 ¥em 2)

h\]’ %\o AN LXIL’} - '*.c”‘? \,

[

g ,9\ t;;o;‘b\u.\-s% “"“"": DQ Qb\oc.\ks ’)
?77Co\6 OL Do ® C_O\QOQ %\ou\{\s 3

¢

202

Solutions and Samples: A4 and AB1

@)Compewthenwnﬁmrmnmmm PlaceFlipped below. Assume that PlaceFllppéd is called only
with parameters that satisfy its precondmon

veid Quilt::PlaceFlipped(int startRow, int startCol,

apmatrix<char> & gmat)

// precondition: startRow 2 0; startCol 2 0;

/7
/7

startRow + myBlock.numrows () £ gmat.numrows(

)i
startCol =+ myBlock numcols{) < gmat.numcols{):;

// postcondition: a flipped version of myBlock has been copied into the

//
//
{

}

int

for
{

matrix gmat with its upper-left corner at the position
startRow, startCol

r, ¢;

(r = 0; r < myBlock.numrows (); r++)

for (¢ = 0; ¢ < myBlock.numcols{); c++)

{

3
}

g,maxLovoriion NP} WATHY Y TH S SEATN L e <=l

203

(c) Write the member function QuiltToMat, asstarted below. QuiltToMat return$ a matrix representing
the whole quilt in such a way that the main block alternates with the flipped versiomof the main block, as
shown in the onginal example. If Q represents the example quilt, then the call Q.QuiltToMat ()
would return a matrix of characters with the given block placed starting with the upper-left corner at position
0, 0; the flipped block placed with its upper-left corner at position 0, 5; the given block placed with its upper-
left corner at position 0, 10; the flipped block placed with its upper-left corner at position 4, 0, and so on.

In writing QuiltToMat, you may call functions PlaceBlock and PlaceFlipped specified in
part (b) Assume that PlaceBlock and PlaceFlipped work as specified, regardless of what you
wrote in part (b).

Complete the member function QuiltToMat below.

apmatrix<char> Quilt::QuiltToMat{)

. Al snem s
ryBlec K memrous () |~y eDF o ny®

af Mok w&Llwer Aok Lp\7 Rous O’; Nochs

“’*’ b 4 7\/
A °\/7L}
‘(;°r (X o) XLM* Y\VmCOUQL)\ % & = ”\1%\04\\. o >
)!' & = .9 ‘/9 3“,' \‘ Y&% "‘\Y 6\0‘&& . DM Cp\g ‘.\\

:orL\/ O)/L M X N M Lo\g(_}-

g :

¢ e ==0)

pi ‘ \
'?\o(_e %\ogy\ (X,‘/} m)"\ y OF ¥y
VA
>
el\se

2

?\ace ﬁ\\ye&é (.X;\il) mc“\'\; S=--)

Commentary:

Student earns all points except the return matrix and loop correctness /2 points on part (c).

Solutions and Samples: A4 and AB1

i _Good Solution: 6 points

(a) Write the code for the constructor that initializes a quilt, as started below. The constructor reads the block
pattern for the main block from a file represented by the parameter inFile. You may assume the file is
open and that the file contains the number of rows followed by the number of columns for the block,
followed by the characters representing the pattern. For example, the file pattern, which contains the
pattern for the first block in the quilt shown above, would look like this:

45
X...X
LK. X,

——— e
X
X

The constructor also sets the number of rows and columns of blocks which make up the entire quilt in the
initializer list.

Complete the constructor below. Assume that the constructor is called only with parameters that satisfy its
precondition.

Quilt::Quilt(istream & inFile, int rowsOfBlocks, int colsOfBlocks)
: myBlock(0, 0), myRowsOfBlocks (rowsOfBlocks), -

myColsOfBlocks (colsOfBlocks)
// precondition: inFile is open, rowsOfBlocks > 0, colsOfBlocks > 0
// postcondition: myRowsOfBlocks and myColsOfBlocks are initialized to

/7 the number of rows and columns of blocks that make up
/7 the quilt; myRlock has been resized and

// initialized to the block pattern from the

/7 stream inFile.

SRR

™ C_,(-;j/
‘*‘r}/ . ’

AT T
inHie>2r)
nEle»y e

geszL (\nF-'Le/ w);\//%o %,} He e of L waslbor for b 4% U
W\SB\OC L. fﬁ%(zp_(r)c>/-
for (Le0rc e ive)
EPOFC§=O)jLC)§*a>
‘L File 3> m@»ock[gji}'];
%@H*M(MFN, Corl/ end. ot Lime v kear
3/ 4

Mﬁ%wsofg\oc\zs =r,
n\% CD(S O‘F(B(OCk5 :C—/‘

5

(b} Complete the member function PlaceFlipped below. Assume that Placer"lpped 1s called only
with parameters that satisfy its precondition.

void Quilt::PlaceFlipped(int startRow, int startCol,
apmatrix<char> & gmat)

// precondition: startRow 2 0; startCol 2 0;

/7 startRow + myBlock.numrows () £ gmat.numrows/();
// startCol + myBlock.numcols () <€ gmat.numcols();
// postcondition: a flipped version of myBlock has been copied, into the
/7 matrix qgmat with its upper-left corner at the position
// startRow, startCol
{

int r, ¢;

for (r = 0; r < myBlock.numrows(); r++)

{

for {c = 0; ¢ < myBlock.numcols(); c++)

cg_ma'f‘[ﬁav‘('pow + FJ[:“‘:«'}'M *dj ~
) - myBleck E“:&?‘MS OF B ocks -r-i_J[<J,

Solutions and Samples: A4 and AB1

(c) Write the member function QuiltToMat, asstarted below. QuiltToMat returns a matrix representing
the whole quilt in such a way that the main block alternates with the flipped version of the main block, as
shown in the oniginal example. If Q represents the example quilt, then the call Q.QuiltToMat ()
would return a matrix of characters with the given block placed starting with the upper-left comner at position
0, 0; the flipped block placed with its upper-left corner at position 0, 5; the given block placed with its upper-
left corner at position 0, 10; the flipped block placed with its upper-left comner at poiition 4,0, and so on.

In wniting QuiltToMat, you may call functions PlaceBlock and PlaceFlipped specified in
part (b). Assume that PlaceBlock and PlaceFlipped work as specified, regardless of what you
wrote in part (b). .

Complete the member function QuiltToMat below.

apmatrix<char> Quilt::QuiltToMat ()

g WIX<CL\J> %f.,;(ln)@/‘ : ~

et Y, C
boo! 0ng = *f-r\-«.e'

Lo (r=0, rese, ”zzf)
*jjcr(Q:O‘ Q,(IS/'U’5>
% (Om%}
/1’)\0\@(?) oc\<<‘(C,GVUVJ

else

?[a\ceﬂiwdio ¢ Qb/w\)/

oriaz ! oria
"9—-.,0(\3/
3

relurn %M/

5

Poor Solution: 4 points (3'/2, rounds up)

(a) Write the code for the constructor that initializes a quilt, as started below. The constructor reads the block
pattern for the main block from a file represented by the parameter inFile. You may assume the file is
open and that the file contains the number of rows followed by the number of columns for the block,
followed by the characters representing the pattern. For example, the file pattern, which contains the
pattern for the first block in the quilt shown above, would look like this:

4 5
X...X%
SX.X
.
x
The constructor also sets the number of rows and columns of blocks which make up the entire quilt in the
initializer list.

Complete the constructor below. Assume that the constructor is called only with parameters that satisfy its
precondition. - :

Quilt::Quilt(istream & inFile, int rowsOfBlocks, int colsOfBlocks)
: myBlock(0, 0), myRowsOfBlocks (rowsOfBlocks),
myColsOfBlocks (colsQOfBlocks)
// precondition: inFile is open, rowsOfBlocks > 0, colsOfBlocks > 0
// postcondition: myRowsOfBlocks and myColsOfBlocks are initialized to

// the number of rows and columns of blocks that make up
/7 the quilt; myBlock has been resized and

// initialized to the block pattern from the

// stream inFile.

inFile =7 myﬁou@SGF Sfacksj'
inFile D7 r*\?/CdS oF 8{9:!'(5/'
F{)r inE > = @/’ Y <& M\/R’OJJSO‘FB(OC’/(S,' %*"1"‘)

5
for (it P=O 7) <7

;En?:le >0 f‘“éslocl‘ EX]E“()],'
g

Cols OF Blacks [~)

3

Solutions and Samples: A4 and AB1

(b) Complete the member function PlaceFlipped below. Assume that PlaceFlipped iscalled only
with parameters that satisfy its precondition. - -

void Quilt::PlaceFlipped(int startRow, int startCol,
apmatrix<char> & gmat)
// precondition: startRow 2 0; startCol 2 0;

// startRow + myBlock.numrows () £ gmat.numrows/{);
// startCol + myBlock.numcols () S gmat.numcols{);
// postcondition: a flipped version of myBlock has been copied into the
/7 matrix gmat with its upper-left corner at the‘position
// startRow, startCol
{

int r, c¢;

for (r = 0; r < myBlock.numrows(); r++)

{
for (c = 0; ¢ < myBlock.numcols{); c++)
{
O(N\N‘\‘E(S:'OY“{‘ rov) + MyB,O”—’J,.mr*fowSQ)- rj[(s':bar‘}tc) + My 8«’3"-"‘ ﬁ\{"cdsc)) - C] -
} ’ A o ™y Slotk[:rjerJ‘

}

(c) Write the member function QuiltToMat, as started below. QuiltToMat returnya matrix representing
the whole quilt in such a way that the main block alternates with the flipped version_of the main block, as
shown in the original example. If Q represents the example quilt, then the call Q.QuiltToMat ()
would return a matrix of characters with the given block placed starting with the upper-left corner at position
0, 0; the flipped block placed with its upper-left corner at position 0, 5; the given block placed with its upper-
left corner at position 0, 10; the flipped block placed with its upper-left comer at position 4, 0, and so on.

In writing QuiltToMat, you may call functions PlaceBlock and PlaceFlipped specified in
part (b). Assume that PlaceBlock and PlaceFlipped work as specified, regardless of what you

wrote in part (b).
Complete the member function QuiltToMat below.

apmatrix<char> Quilt::QuiltTcMat ()

%

int r,C/’
{:or(r‘:O; s < "\,QMOP Rlechs r++>

g \‘ - -
FO(‘ (C O Cc < N’\\/CD&S O'F 6&"5 C‘L“—/ b

,lF < r::(,:\yf?aw; O'F B[OCkS _0>
g

f++; (= O
Piqce@-ock e C-)

C"Se

¢
Place Bl ock ((‘/ C) .

3 -
EF((f“”‘): é\\/ (’oweO7b Blocks —|
E .
e+ 7 c=O)
PE\LQF[:WZA(”’}C)/’
dse
Z (y
Place Fligped lr+1,C)]

3

3

, Commenta ry
;(a) ;

210

Computer Science AB: Question 3

This question examined the student’s facility with a
basic dynamically allocated data structure, the linked
list, and was very similar to, and somewhat easier than,
linked list questions asked in the past. It required
knowledge of simple pointer mechanics and list
traversal combined with an array traversal in part (c).
The mean score was 5.63, and the question was an
effective discriminator at the lower grade cutpoints.
The first part tests basic linked list mechanics by
asking the student to insert a new member into an
existing list (that may have no members). The student
needed to create a new node, assign to the data fields of
the new node, and correctly insert the new node into
the (potentially) existing list. Most students did very
well on this question. Common errors included failure
to distinguish between declaring a pointer and allocat-

ing new memory, and not undersgaﬁding how to use the
constructor that was provided to accomplish the task of
initializing the data fields.

In part (b), the student was asked to traverse the
entire list, counting the number of nodes that matched
a particular criterion. Most students performed quite
well on this part, with the most common errors being
running off the end of the list, and forgetting to declare
a temporary pointer to traverse the list.

In part (c), the student was asked to reason about
traversing an array of linked lists to find a maximum,
which caused some cognitive overload as students
appeared to have trouble “switching gears” from one
data structure (the linked list) to another (the array).
The most common errors were incorrectly initializing
or updating the maximum value, and printing out the
incorrect information (cither ¢he wrong data or clubs
that were not maximal).

Scoring Guidelines

Part A: InsertMenmber (2 points)

+1/2 new (can use non-existent default constructor)
+1/2 attempted assignment to both data fields and/or next

+1/2 correct assignment of all data members

+1/2 correct insertion of new node (watch for empty list failure)

Part B: CountLevel (3 points)

+1/2 temp pointer to traverse
+1 list traversal

+1/2 attempt

+1/2 correct (missing/incorrect init of temp pointer loses this half)
+1 count members

+1/2 test _
+1/2 increment count {in context of a test)

B

e

+1/2 return correct accumulated value (missing init of count loses this half)

Part C: PrintClubsWithMostInLevel (4 points)

+1 loop over all clubs (no OBOB)

+1 compare and set max as appropriate
+1/2 init (watch for unguarded init to 0" element)
+1/2 correct (CountLevel must have correct parameters)

+1 identify appropriate clubs to print
+1 correctly print only appropriate clubs (only earns /> if missing line break)
Usage: -1/2 memory leak

Note: confusion of -> vs. . results in failure to earn associated points rather than usage deduction
(except in “attempt” and “identify” points)

212

Solutions and Samples: AB3

Sample Student Responses
Please note that only the portions of the question that contain student responses have been reproduced here. For the
entire question, see pages 156-160.

— -

Excellent Solution: 9 points

(a) Write function InsertMember, asstarted below. InsertMember adds a student with the given name
and respective level in high school to the given club.

For example, after the call InsertMember ("Taylor®, 9, Clubl), variable Clubl might be as
shown below. The diagram shows that the new member °Tayl or® was 'msened at the beginning of the
list of members, but the student could have been inserted anywhere in the list.

Clubl

clubName: German
memberList —{ Taylor | 9E—>{Robens|lOB—-{SchwabJ]]B-°-f Shaw |9 [} Hunt llwodeer]mm

Complete function InsertMember below. Assume that InsertMember is-called only with
parameters that satisfy its precondition.

void InsertMember (const apstring & name, int level, Club & anyClub)
// precondition: anyClub contains zero or more members, name does not

// appear in anyClub, and level is 9, 10, 11, or 12
// postcondition: & new member with the given name and respective level
// has been added to anyClub

{

q”ya“g&\m&ibﬁ: new, Mewbs . ’
} (en, el om Ot hauter).
/

213 |

(b) Write function CountLevel, asstarted below. CountLevel counts and rem&xs the number of club
members of the specified level in anyClub.

For example, the call CountLevel {(Clubl, 10) returns 3, since there are 3 tenth graders in the
German club. The call CountLevel (Club2, 10) returns O since there are no tenth graders in the

Computer club.

Complete function CountLevel below. Assume that CountLevel is called only thh parameters that
satisfy its precondition.

int Countlevel{const Club & anyClub, int level)

// precondition: 1level is 9, 10, 11, or 12

o // postcondition: returns the number of members in anyClub -
// of that level

/',\‘3' Cgu,.‘i._q_(;?,r.
~ A

e f)a F pTr o Qn7({gé' ainboe Lict
}»JLJQ () y

l{({:ﬁ’l‘ — C\\.d >z KQVQ{)
Ceunter 44
ﬁ '_PTr - '\Cx’f

5

{
PETW A ((ou'n.“%e(\ '
J

Solutions and Samples: AB3

(c) In writing PrintClubsWithMostInLevel, you may call function CountLevel specified in
part (b). Assume CountLevel works as specified, regardless of what you wrote in part {b).

Complete function PrintClubsWithMostInLevel below. Assume that
PrintClubsWithMostInLevel is called only with parameters that satisfy its precondition.

void PrintClubsWithMostInlevel (const apvector<Club> & clubsArray,
int level)
// precondition: c¢lubsArray contains clubsArray.length() clubs
// postcondition: prints the name of the c¢lub or clubs in clubsArray
// that contain the largest number of members in a given
// level in high school (8 ~ 12), one club per line.

. / | o
Wt ok, s
" Ox = p//

-Fc((tm"tvc/' e 6/434"3} éu« H () - y t £+)
’f‘L /G‘-{Aﬂ-%lm\,ejz C/&éSﬁrm),c 2 {g\ﬂ_{)
Wax = Count L vef (f&é’ r(fo

‘“2;\19)1&
1@ Li],bwt)
ctlint jzp. i ch |
r{ 12 i< ¢ lebg Arro}, length() v)
t‘F[(cun'x’thu (C(éSArro.y[i} iQW/J > e an«k.J
Cout ¢ C{“/JS Af*@)fl"lg‘&,‘é;vaw < eued’ |
/

(s

- 215 |

Good Solution: 6 points (5'/2, rounds up)

(a) Write function InsertMember, as started below. InsertMember adds a student with the given name
and respective level in high school to the given club.

For example, after the call InsertMember ("Taylor®, 9, Clubl), varable Clubl might be as
shown below. The diagram shows that the new member "Taylor® was inserted at the beginning of the
list of members, but the student could have been inserted anywhere in the list.

Clubl

clubName: German
memberList —-—{ Taylor l 9H—°{Roberts [IO[HSichwa'bllllH Shaw I 9 H—’L Hunt llO 11 Rodger IIO[A

Complete function InsertMember below. Assume that InsertMember is called only with
parameters that satisfy its precondition.

void InsertMember (const apstring & name, int level, Club & anyClub)
// precondition: anyClub contains zero or more members, name does not

// appear in anyClub, and level is 8, 10, 11, or 12

// postcondition: a new member with the given name and respective level
/7 has been added to anyClub

2

Meerberc Treen = OeénN Mmeme ¢
FRenP », name = NDame,
Teeap s level = Jeyplly
tenp=Snext = 4 ’
@ XX mo\ﬁ’yCiw\b“‘t)m?ngéf’hST \
dny Club = Meenber)ist = e
g

Ty

N

Solutions and Samples: AB3

o (b) Write function CountLevel, as started below. CountLevel counts and returns the number of club
= members of the specified level in anyClub. -

For example, the call CountLevel (Clubl, 10) returns 3, since there are 3 tenth graders in the
German club. The call CountLevel (Club2, 10) returns O since there are no tenth graders in the
Computer club.

Complete function CountLevel below. Assume that CountLevel is called only with parameters that
satisfy its precondition. '

int Countlevel (const Club & anyClub, int level)

// precondition: 1level is 9, 10, 11, or 12

// postcondition: returns the number of members in anyClub
// of that level

% yaY o;(A.(Y\']

membacﬁ LN Fany Club =7 N (‘A‘ONHST'
whilg C Tlenp V20)
(T

3
(&

)

FGhecnpiiuel = Vevel)
Sum 1 '>
TEmMpQ = Tem £ -2 F‘CXT.()

(c) In writing PrintClubsWithMostInLevel, you may call function CountLevyel specified in
part (b). Assume CountLevel works as specified, regardless of what you wrote in part (b).

Complete function PrintClubsWithMostInLevel bdow“Awunwthm . .
PrintClubsWithMostInLevel iscalled only with parameters that satisfy its precondition.

void PrintClubsWithMostInLevel (const apvector<Club> & clubsArray,
int level)

// precondition: <clubsArray contains clubsArray.length() clubs

// postcondition: prints the name of the club or clubs in clubsArray

/7 that contain the largest number of members 'in a given
// level in high school (9 - 12), one club per line.
4
v Ll R -
ARING X;MQS‘?—OD‘ : . -

r;v FH05 X< dubos Arcay lengr by xer)

x‘?CCov\mL_ﬁvd (lubs Arw\;«[ﬂ £ Ve)> Mos T

MEST = \Qurﬁ‘l Euti(clv&bs Xcca f”\’

For(X =04 x Lclubs Aty | mgﬂn; Xt

'&%\CCQ%(“’*LQ‘{@((C V\b< pﬁ(ﬁiyﬂ >d lgu{ J:: ~CET
CountT <« r‘(ubs kﬁﬂfuy«»‘(j (’{bﬁQMC,J

>
Ko

. While techmcaﬂykthere is no default construcmr for Member (as a constructor Wlth par

did r carrecdy assxgn the ata ﬁelds to temp and dxd not msert correctly *
f3. 'udent mcorrecdy mitfahzes the temp pomter (also causes the loss of the Ioa

Solutions and Samples: AB3

Poor Solution: 3 points

(a) Write function InsertMember, asstarted below. InsertMember adds a studentwith the given name
and respective level in high school to the given club.

For example, after the call InsertMember ('Taylor' » 9, Clubl), variable Clubl might be as
shown below. The diagram shows that the new member *Taylor® was inserted at the beginning of the
list of members, but the student could have been inserted anywhere in the list.

Clubl

; clubName: German
. memberList —=] Taylor | 9 [}~Robens[10]{+{Schwab[11[}=| Shaw |9 |1+ Hunt [10[{+{Rodger [10]]

Complete function InsertMember below. Assume that InsertMember is called only with
parameters that satisfy its precondition.

void InsertMember (const apstring & name, int level, Club & anyClub)

// precondition: -anyClub contains zero or more members, name does not
// appear in anyClub, and level is 9, 10, 11, or 12

// postcondition: a new member with the given name and-“respective level
I sA num=0, has been added to anyClub

f° =2/ L(_) _ o .
'{‘ m == WU haan Hohs st Cewm,
reforn q‘\\)m 'Geﬂ(_r? NAW® NAMO -

l /
i 2 levg) = et f
é:v w@(MJM l“Nw W?-))\u" NU\,L
|

%

it C(»Nw’-/- WL Luff;g‘(7(@,,/-9) I“CCW\QA’*\@/I\?(

=pulL)

NV it . +tem
5 humbgflrﬁ WJGBJ\\SI '7Mj’ > Py M‘M(lﬁ 30’ -
; °ﬁ%‘,ﬁ">w[‘\'« L “}MX'-J
; L= -
(Q{'?’bf“’\ V\\Jm E’MZMLE"‘? w,&- ‘&/"‘f/

(b) Write function CountLevel, as started below. CountLevel counts and rewms the number of club
members of the specified level in anyClub. - -

For example, the call CountLevel (Clubl, 10) returns 3, since there are 3 tenth graders in the
German club. The call CountLevel (Club2, 10) returns O since there are no tenth graders in the
Computer club.

Complete function CountLevel below. Assume that CountLevel is called only with parameters that
satisfy its precondition.

int CountLevel (const Club & anyClub, int level)

// precondltlon level is 9, 10, 11, or 12

// postcondl ion: returns the number of members in anyclub
- TR =) of that level

(\\k O{f.kéc[u)? 'M “‘%)
\t‘C d\)b A(\ﬁl)&c‘k] WM &“h‘%
in h\/vﬁjg}
£ mebULL

1Lur1’\Q
while (m\u‘w‘r ~VULL)

' 18 (howa) = mon belist @LQ,,{])

AUmM %) - .
e ter 3 = m%&.@(\:fﬂuﬁ‘j

)
oA N Ry m;

Solutions and Samples: AB3

fj};:; (c) Inwriting PrintClubsWithMostInLevel, you may call function Coq.ptLgvel specified in
part (b). Assume CountLevel works as specified, regardless of what you wrote in part (b).

Complete function PrintClubsWithMostInLevel below. Assume th.at _
PrintClubsWithMostInLevel is called only with parameters that satisfy its precondition.

void PrintClubsWithMostInLevel {const apvector<Club> & clubsArray,
int level)

// precondition: c¢lubsArray contains clubsArray. length() clubs

/7 postcondltlon ‘prints the name of the club or clubs in clubsArray

1 e PR s T o s T
ﬁ'ﬁ-*‘:"“"" Pcr(k“o - gl leng iy ked)
rat * LY (cl/‘o AreeyLie), Coundha] >h«Q?~@°“#?
L feot L& Clob -;hvw\%ﬁ%é‘/
K (L) cour-lodl 2 ""} Coun)
Mq}{(d\)b Atrdy
covs e club “>namg Zeenl]
)
Commentary

(a) RI0 out of 2 Student earns the attempt asswnment 'f> point.
(b) 1‘/ 5 out of 3. Studem earns the list traversal, increment count, and 1eturn 1/z pomts
(c) 1 out of 4; Student earns the loop point.

2271

Computer Science AB: Question 4

This question examined the student’s facilicy with
binary trees, the other common dynamically allocated
dara structure. This was a reasonably difficult tree
question and the AB students performed well, although
not as well as they did on Question AB3. The mean
was 4.57 and this question discriminated well across
all grade levels but was most useful at the 4-5
grade cutpoint.

Part (a) was the more difficult of the two parts, as
it required the student to correctly keep track of their

Scoring Guidelines

state as they recursively traversed the tree. Most students
know to use recursion to traversea binary tree and thus
received at least some points. The most common errors
included failing to properly guard the NULL case, and
returning incorrect values when the name was not in
the subtree.

Part (b) was much simpler than part (a) and almost
all students received full credit. The most common
error was a failure to correctly guard and handle the

NULL case.

Part A: PathLength (7 points)

+1 null test and-return 0 {must have attempt at else)

+1/2 attempt
+1/2 correct

+2 recursive calls on left/right
+1 attempt (must have both calls, “procedures” OK, need 3 parameters of appropriate type)
+1 correct (watch for not incrementing level; level++ isincorrect)
+2 compute and return result when name in subtree (note: presence in root is immarerial)
+1 attempt (must attempt to verify that name is in subtree)
+1 correct
+2 compute and return result when name is NOT in the subtree
+1 attempt

— compare T->name to someName

— must attempt to verify that name is NOT in the subtree

+1 correct

Part B: RootPath (2 points)

+1 null test and return 0 (must have attempt at else)

+1/2 attempt
+1/2 correct
+1 general case
+1/2 attempt
— “procedures” OK

—need 3 parameters of appropriate type

+1/2 correct

[

2202

R

Solutions and Samples: AB4

Sample Student Response
Please note that only the portions of the question that contain student responses have been reproduced here. For rhe
entire question, see pages 161-163.

Excellent Solution: 9 points

(a) Write function PathLength, asstarted below. If person P isintree T, then
PathLength (T, P, 1) should return the length of the longest path from the root of T 1o a node
containing P; if person P does not appear in tree T, then PathLength (T, P, 1)} should return 0.
Note that parameter level can be used to keep track of the current level of the tree.

For the tree given above, the following are examples of calls to PathLength.

Function Call Value Returned

PathLength{T, ®"Susan®, 1)
Pathlength(T, °"Ken®", 1)
Pathlength(T, °"Chris®, 1)
PathLength(T, . "David®, 1)
PathlLength(T->left, -"Theresa®, 1)
PathLength(T->right=<>left, *Don®, 1)

Wi O

In writing PathLength, you may call function Max as specified in the beginning of this question.
Assume that Max works as specified.

Complete function PathLength below.

int PathLength(TreeNode * T, const apstring & someName, int level)

if (T==Nurt)
[eforr 0,
e‘gq

iF (Tonane <= Some Name)
f<fure iy (rml mox (Path Lo %(T—)le@ Sore Name, ley| %’iD
?QH\ Lm (T‘Bf\gké Sowt’ﬂfa@e} jfvcp +$}>
tlse
e Tinn MM\(P FLHy}L (Ti) lefs o»eﬁo\@Q IW@‘ + i)}
?523;\ L@rﬁﬂx (T?}f 3%’\% jaF\Q Nad‘e va; #i\))

<

(b) Write function RootPath, .as started below. RootPath should return the lergth of the longest path

' from the root of the tree to a node containing the same name as the root; if no node other than the root
contains that name, then RootPath returns 1;if the tree is empty, RootPath should return 0. For the
tree given above, the following are examples of calls to RootPath.

Function Call Value Returned

RootPath(T)

RootPath(T->left)
RootPath{T->right)
RootPath(T->left->left->left)

O U

o In writing RootPath, you may call function PathLength specified in part (a). Assume that
PathLength works as specified, regardless of what you wrote in part (a).

Complete function RootPath below.

int RootPath(TreeNode * T)

o (7= yur)

(¢tura (]

?lsg
rehen Dotk Lenydh (T) T2 fame, i}}

: fOS

Commentary:

- Student earns all 9 points with a very compact solution,

Solutions and Samples: AB4

Good Solution: 6 points

(a) Write function PathLength, as started below. If person P isintree T, then
PathLength(T, P, 1) shouldreturn the length of the longest path from the root of T to a node
containing P; if person P does not appear in tree T, then PathLength(T, P, 1) should return 0.
Note that parameter level can be used to keep track of the current level of the tree.

For the tree given above, the following are examples of calls to PathLength.
Function Call Value Returned

PathLength(T, ®Susan®, 1)
PathLength (T, °"Xen®", 1)

= - PathLength(T, ®“Chris®, 1)

¥ PathlLength (T, °®David~®, 1)

: pPathlength(T->left, ®“Theresa", 1)
Pathlength(T->right->left, °Don®, 1)

W OoyWw i

In writing PathLength, you may call function Max as specified in the beginning of this question.
Assume that Max works as specxﬁed) : ~

EONNIN

Complete function PathLength below
[/ level is not us ed|

int PathLength(TreeNode * T, const apstrlng & someName int level)

[
lhT’lﬁO;\[:O/ k=0;

V(TR NULL)

?' *(\a‘?\Lwh (T-—?\Q\U— 5bw‘€_(\)aMQ QV'QU
J - P4*K L@wg.n (T> hgk‘* Lo vae Namq eueD
T((\—'Ol ——-O> g«g@—?nawe_ =Sowme th@
at He r\awe ISVITL below cuUrrem vode but Tnix node cowtaing (T
K+t / ctart COU.H‘H% The path
2lge l'€’61>o ”J
/€ e wode ic fart of the path

‘k Max (1 ,J)
) €ind the (DWSQS‘(' path <o far;

return K

; 225 —

(b) Write function RootPath, as started below. RootPath should return the length of the longest path
from the root of the tree to a node containing the same name as the root; if no node Bther than the root
contains that name, then RootPath returns 1; if the tree is empty, RootPath should return 0. For the
tree given above, the following are examples of calls to RootPath.

Function Call Value Returned
RootPath(T) 4
RootPath(T->left) 1
RootPath{T->right) 5
RootPath(T->left->left->left) 0

In writing RootPath, you may call function PathLength specified in part (a). Assume-that -
PathLength works as specified, regardless of what you wrote in part (a).

Complete function RootPath below.

int RootPath(TreeNode .* T)

return (Pathlength (T, T rome, 0)
t

Commentary

Solutions and Samples: AB4

Poor Solution: 4 points

(a) Write function PathLength, as started below. If person P isintree T, then
PathLength(T, P, 1) shouldreturn the length of the Jongest path from the root of T to anode
containing P; if person P does not appear in tree T, then PathLength(T, P, 1) shouldreturn 0.
Note that parameter level can be used to keep track of the current Jevel of the tree.

For the tree given above, the following are examples of calls to PathLength.
Function Call Value Returned

PathLength(T, °®Susan®, 1)

- PathLength(T, °®Ken®, 1)

- PathLlength(T, °Chris®, 1)
PathLength(T, ®David®, 1)
PathLength(T->left, ®*Theresa®, 1)
PathLength (T->right->left, “Don®, 1)

WHREOONhWM™

In writing PathLength, -you may-call function Max as specified in the becrmmng of this question.
Assume that Max works as specified.

Complete function PathLength below.

int PathLength(TreeNode * T, const apstring & someName, int level)

i ¢ U-: = T\JU\-L\ retuyn O }

Q\ge
1«@ (T2 veme == comeNo. M>
{Qh{m ?QVC\

else
Z‘D&*}\L‘%ﬁi‘v\b—ﬂ le 4, SomaNoma 4 level | rh);
Po&uu\%ML 20qh | sonelans | ke) H-)

3

- 227

(b) Write function RootPath, as started below. RootPath should return the length of the Jongest path
from the root of the tree to a node containing the same name as the root; if no node.other than the root
contains that name, then RootPath returns 1; if the tree is empty, RootPath should return 0. For the
tree given above, the following are examples of calls to RootPath.

Function Call Value Returned
RootPath(T) 4
RootPath(T->left) 1
RootPath (T->right) 5
RootPath{T->left->left~>left) 0

In writing RootPath, you may call function PathLength specified in part (a). Assume that
PathLength works as specified, regardless of what you wrote in part (a).

Complete function RootPath below.

int RootPath(TreeNode * T)

% | € (‘K’»z /UULL>
YE)\"&(WO‘)

3

oo Parh Lena b LT) Tnome 3 \N)

Commentary: |
(a) 2ourof7. Student earns the point for handling the NULL case, as well as the left/right attempt point.
“(b) "2 out of 2. Student carns all pomts for thIS part in stralahtforwaxd fashion. -

Statistical Information o
8 Table 4.1 — Section IT Scores B Table 4.4 — Section I Scores and AP Grades B Reporting AP Grades
B How AP Grades Are Determined 8 College Comparability Studies 8 Purpose of AP Grades

&8 Table 4.2 — Scoring Worksheets
B Table 4.3 — Grade Distributions

B Reminders for all Grade Report Recipients

Table 4.1 — Section Il Scores
The following tables show the score distributions for AP candidates on each
- - free-response question from the 1999 Computer Science exams.

Computer Science A

Question2 Question3 Ouestiond
Numberof -~ %At | Numberof - %At | Numberof %At~
Students . - Scor Students Score " | -Students *.Score

Mean as % of.
Maximum Score

/- Maximum Seore .+

How AP Grades Are Determined

Students could have received 0 to 40 points in Section I
and 0 to 36 points in Section II of either of the Com-
puter Science exams. However, these scores are not
released to the student, school, or college. Instead, these
raw scores are converted to grades on an AP 5-point
scale, and it is these grades that are reported. This
conversion involves a number of steps, which are
detailed on the Scoring Worksheet on the facing page:

1. The multiple-choice score is calculated. To adjust
for random guessing, a fraction of the number of
wrong answers is subtracted from the number of
right answers. This fraction is 1/4 for five-choice
questions (as on the Computer Science exams), so
that the expected score from random guessing will
be zero. s

2. The free-response score is calculated. When the
free-response section includes two or more parts,
those parts are weighted according to the value
assigned to them by the Development Committee.
This allows the committee to place more impor-
tance on certain skills to correspond to their
emphasis in the corresponding college curriculum.

3. A composite score is calculated. Weighting also
comes into play when looking at the multiple-
choice section in comparison to the free-response
section. In consultation with experts from the
College Board and ETS, the AP Computer Science
Development Committee decided that for the both
exams, Section I should contribute 50% to the total
score, and Section II, 50%. The maximum compos-

. ite score was 80 for Computer Science A, and 100
for Computer Science AB. The Scoring Worksheets

on the next two pages detail the process of convert-
ing section scores to composite scores for each
exam.

4. AP grades are calculated. The Chief Faculty
Consultant sets the four cut points that divide the
composite scores into groups. A variety of informa-
tion is available to help the CFC determine the
score ranges into which the exam grades should fall:

B Distributions of scores on each portion of the
multiple-choice and free-response sections of
the exam, along with totals for each section and
the composite score total, are provided.

B With these tables and special statistical tables
presenting grade distributions from previous
years, the CFC can compare the exam at hand
to results of other years.

B Foreach composite score, a roster summarizes
student performance on all sections of the
exam.

B Finally, on the basis of professional judgment
regarding the quality of performance repre-
sented by the achieved scores, the CFC deter-
mines the candidates’ final AP grades.

See Table 4.3 for the grade distributions for the
1999 AP Computer Science Exams.

If you're interested in more detailed information about
this process, please see the “Technical Corner” of our
website: www.collegeboard.org/ap. There you'll also find
information about how the AP Exams are developed,
how validity and reliability studies are conducted, and
other nuts-and-bolts data on all AP subjects.

230

Table 4.2 — Scoring Worksheet — AP Computer Science A

__Section |: Multiple Choice

— (1/4 X

Number correct

Number wrong
(out of 40)

 Section II: Free Response

Question 1 X 1.1111
{out of 9)

Question 2 B X 1.1111
{out of 9} :)

Question 3 X 1.1111
{out of 9)

Question 4 X 11111
(out of 9)

Sum =

__Composite Score

+ =
Weighted Weighted ~ Composite Score
Section 1 Section II {Round to nearest
Score Score whole number.)

17X 1.000 =

I

(If less than zero,

Weichted
seilgoflen Composite AP Grade
Score Score Range*
{Do not round)
60-80

Multiple-Choice ~ Weighted

Section |

Score
enter zero.) =

Score

]

wowmowm B ou W

% oW o | B
{

jd

BB B °

%

" ', fAP' Grade Conversion Chart
_ Computer Science A

Table 4.2 — Scoring Worksheet — AP Computer Science AB

- (1/4 X)X 1.2500 = =
Number correct Number wrong Muldple-Choice Weighted
S tout of 40) Score Section |
s (If less than zero, Score
enter zero.) =
Question 1 X 1.3889 = .
(out of 9) (Da notround) &
B ' @
Question 2 - X 1.3889 = ~ -8
(out of 9) i (Do not round) g
Question 3 X 1.3889 = .
(out of 9} (Do.not round) i“
Question 4 X 1.3889 = : .
{out of 9) (Do not round) -
Sum =

Weighted
seiléiofn Composite AP Grade

Score Score Range*
(Do not round)

70-100
60-69
41-59
’ 31-40

+ = 0-30 1

Weighted Weighted ~ Composite Score

Section I Section II (Round to nearest
Score Score whole number.)

N W B Ol

*The candidates’ scores are weighted
- according to formulas determined in advance
eachyear by the Development Committee.
to yield raw composite scores; the Chief
Faculty Consultant is responsible for
converting composite scores to the -point
AP scale. '

.
2 N
ey

BB

232

Table 4.3 — Grade Distributions

Computer Science A
Nearly 60 percent of the AP students who took this exam earned a qualifying grade of 3 or above.

Exémination Grade - Number of Students Percent at Grade

, Extremely weﬂ quahﬁed
Well quahﬁed |

Quahﬁed :
Possibly quahﬁed

- No rccommendanon ST 1

. Toral Number ofStudents : Sy N LTl 12,067'
Mean Grade S L Sl 84

Standard Deviation =~~~ L RIS 147

Computer Science AB
More than two thirds of the AP students who took this exam earned a qualifying grade of 3 or above.

Examination Grade » Number of Students | Perce’nt:at’G de
' ;Extremeiy Well quahﬁed +
Well quahﬁed
Qua ified

Posmbly quahﬁed

SRR NG

No Lﬁcommendat1011 B 1

Total Number of Students L o | 5 6,591
Mean Grade ‘ SRR - : e 330
‘Standard Deviation -~~~ e [' 146

Table 4.4 — Section | Scores and AP Grades

The following tables give the probabilities that a student would receive a particular grade enwcach of the 1999 AP

Computer Science Exams given that student’s score on the multiple-choice section of that exam.

Computer Science A

_ Multiple-Choice Score

Computer Science AB

- 18.3%

100.0%

College Comparability Studies

The Advanced Placement Program has conducted
college grade comparability studies in all AP subjects.
These studies have compared the performance of AP
Exam candidates with that of college students in related
courses who have taken the AP Exam at the end of their
course. In general, AP cutpoints are selected so that the
lowest AP 5 is equivalent to the average A student

in college, the lowest AP 4 equivalent to the average

B student, and the lowest AP 3 equivalent to the
average C student (see figure below).

- Average -
College Grade
5) :
A
4
B
3
c
2
D
1

Research studies conducted by colleges and universi-
ties and by the AP Program indicate that AP students
generally receive higher grades in advanced courses than
do the students who have taken the regular freshman-
level courses at the institution. Summaries of several
studies can be located at www.collegeboard.org/ap/
techman/chap5. Each college is encouraged to under-
take such studies in order to establish appropriate policy
for the acceptance of AP grades.

Reminders for All Grade
Report Recipients

AP Examinations are designed to provide accurate
assessments of achievement. However, any examination
has limitations, especially when used for purposes
other than those intended. Presented here are some
suggestions for teachers to aid in the use and
interpretation of AP grades.

AP Examinations in different subjects are developed
and evaluated independently-ofeach other. They
are linked only by common purpose, format, and
method of reporting results. Therefore, comparisons
should not be made between grades on different AP
Examinations. An AP grade in one subject may not
have the same meaning as the same AP grade in
another subject, just as national and college
standards vary from one discipline

to another.

AP grades are not exactly comparable to college
course grades. However, the AP Program conducts
research studies every few years in each AP subject
to ensure that the AP grading standards are compa-
rable to those used in colleges with similar courses.

The confidentiality of candidate grade reports
should be recognized and maintained. All individu-
als who have access to AP grades should be aware of
the confidential nature of the grades and agree to
maintain their security. In addition, school districts
and states should not release data about high school
performance without the school’s permission.

AP Examinations are not designed as instruments
for teacher or school evaluation. A large number
of factors influence AP Exam performance in a
particular course or school in any given year. As a
result, differences in AP Exam performance should
be carefully studied before being attributed to the
teacher or school.

Where evaluation of AP students, teachers, or
courses is desired, local evaluation models should be
developed. An important aspect of any evaluation
model is the use of an appropriate method of
comparison or frame of reference to account for
yearly changes in student composition and ability,
as well as local differences in resources, educational
methods, and socioeconomic factors.

The “Report to AP Teachers,” sent to schools
automatically when five or more students take a
particular AP Exam, can be a useful diagnostic tool
in reviewing course results. This report identifies
areas of strength and weakness for the students in
each AP course. The information may also provide
teachers with guidance for course emphasis and
student evaluation.

Many factors can influence course results. AP Exam
performance may be due to the degree of agreement
between your course and the course defined in the
relevant AP Course Description, use of different
instructional methods, differences in emphasis or
preparation on particular parts of the examination,
differences in pre-AP curriculum, or differences in
student background and preparation in comparison
with the national group.

Reporting AP Grades

The results of AP Examinations are disseminated in
several ways to candidates, their secondary schools,
and the colleges they select.

8 College and candidate grade reporgs contain a
cumulative record of all grades earned by the
candidate on AP Exams during the current or
previous years. These reports are sent in early July.
(School grade reports are sent shortly thereafter.)

B Group results for AP Examinations are available to
AP teachers whenever five or more candidates at a
school have taken a particular AP Exam. This
“Report to AP Teachers” provides useful informa-
tion comparing local candidate performance with
that of the total group of candidates taking an
exam, as well as details on different subsections
of the exam.

Several other reports produced by the AP Program
provide summary information en AP Examinations.

State and National Reports show the distribution of
grades obtained on each AP Exam for all candidates
and for subsets of candidates broken down by sex
and by ethnic group.

The Program also produces a one-page summary of
AP grade distributions for all exams in a given year.

For information on any of the above, please call AP
Services at (609) 771-7300 or contact them via e-mail

at apexams@ets.org.

Purpose of AP Grades

AP grades are intended to allow participating colleges
and universities o award.féllegc credit, advanced
placement, or both to qualified students. In general,
an AP grade of 3 or higher indicates sufficient mastery
of course content to allow placement in the succeeding
college course, or credit for and exemption from a
college course comparable to the AP course. Credit
and placement policies are determined by each college
or university, however, and students should be urged
to contact their colleges directly to ask for specific
advanced placement policies in writing.

AP Publications and Resources -

A number of AP publications, CD-ROMs, and videos
are available to help students, parents, AP Coordinators,
and high school and college faculty learn more about
the AP Program and its courses and exams. To sort out
those publications that may be of particular use to
you, refer to the following key:

Students and Parents SP
Teachers T
AP Coordinators

and Administrators A

College Faculty C

You can order many items online through the

AP Aisle of the College Board Online store at
http://cbweb4p.collegeboard.org/tcb/store.html/. The
most current AP Order Form, which contains informa-
tion about all available items, can be downloaded from
the AP Library (www.collegeboard.org/ap/library).
Alternatively, call AP Order Services at (609) 771-7243.
American Express, MasterCard, and VISA are accepted
for payment.

If you are mailing your order using the AP Order
Form, send it to the Advanced Placement Program,
Dept. E-05, PO. Box 6670, Princeton, NJ 08541-
6670. Payment must accompany all orders not on an
institutional purchase order or credit card, and checks
should be made payable to the College Board.

The College Board pays fourth-class book rate
postage (or its equivalent) on all prepaid orders; you
should allow between two and three weeks for delivery.
Postage will be charged on all orders requiring billing
and/or requesting a faster method of shipment.

Publications may be returned within 15 days of
receipt if postage is prepaid and publications are in
resalable condition and still in print. Unless otherwise
specified, orders will be filled with the currently available
edition; prices are subject to change without notice.

AP Bulletin for Students and Parents: Free
This bulletin provides a general description of the

Sp

AP Program, including policies and procedures for
preparing to take the exams, and registering for the
AP courses. It describes each AP Exam, lists the advan-

tages of taking the exams, describes the grade and
award options available to students, and includes
the upcoming exam schedule.

Student Guides (available for Calculus;
English, and U.S. History): $12

These are course and exam preparation manuals

Sp

designed for high school students who are thinking
about or taking a specific AP course. Each guide
answers questions about the AP course and exam,
suggests helpful study resources and test-taking strate-
gies, provides sample test questions with answers, and
discusses how the free-response questions are scored.

College and University Guide to the

AP Program: $10 C A
This guide is intended to help college and university
faculty and administrators understand the benefits of
having a coherent, equitable AP policy. Topics included
are validity of AP grades; developing and mainraining
scoring standards; ensuring equivalent achievement;
state legislation supporting AP; and quantitative profiles
of AP students by each AP subject.

SPT,A,C

Course Descriptions provide an outline of the AP

Course Descriptions: $12

course content, explain the kinds of skills students are
expected to demonstrate in the corresponding introduc-
tory college-level course, and describe the AP Exam.
They also provide sample multiple-choice questions
with an answer key, as well as sample free-response
questions. A set of Course Descriptions is available

for $100. Course Descriptions are also available for
downloading free of charge from the AP Library on
College Board Online.

Five-Year Set of Free-Response Questions (1995-99): $5 T
This is our no-frills publication. Each booklet contains
copies of all the 1995-99 free-response questions in its
subject; nothing more, nothing less. Collectively, the
questions represent a comprehensive sampling of the
concepts assessed on the exam in recent years and will
give teachers plenty of materials to use for essay-writing
or problem-solving practice during the year.

Interpreting and Using AP Grades: Free AGCT
A booklet containing information on’the develop-
ment of scoring standards, the AP Reading, grade-
setting procedures, and suggestions on how to

interprer AP grades.

Guide to the Advanced Placement Program: Free A
Written for both administrators and AP Coordinators,
this guide is divided into two sections. The first
section provides general information about AP, such as
how to organize an AP program at your high school,
the kind of training and support that is available for
AP teachers, and a look at the AP Exams and grades.
The second section contains more specific details

about testing procedures and policies and is intended

for AP Coordinators.

Released Exams: $20 -

($30 for “double” subjects: Calculus;

Computer Science, Latin, Physics) T
About every four years, on a staggered schedule, the AP
Program releases a complete copy (multdiple-choice and
free-response sections) of each exam. In addition to
providing the multiple-choice questions and answers,
the publication describes the process of scoring the free-
response questions and includes examples of students’
actual responses, the scoring standards, and commen-
tary that explains why the responses received the scores
they did.

Packers of 10: $30. For each subject with a released
exam, you can purchase a packet of 10 copies of that
year’s exams ($30) for use in your classroom (e.g., to
simulate an AP Exam administration).

Secondary School Guide to
the AP Program: $10

This guide is a comprehensive consideration of the

AT

AP Program. It covers topics such as: developing or
expanding an AP program; gaining faculty, administra-
tion, and community support; AP grade reports, their
use and interpretation; AP Scholar Awards; receiving
college credit for AP; AP teacher training resources;
descriptions of successful AP programs in nine schools
around the country; and “Voices of Experience,” a
collection of ideas and tips from AP teachers and
administrators.

Teacher’s Guides: $12 T
Whether you're about to teact an AP course for the first
time, or youve done it for years but would like to get
some fresh ideas for your classroom, the Teacher’s Guide
can be your adviser. It contains syllabi developed by
high school teachers currently teaching the AP course
and college faculty who teach the equivalent course at
their institution. Along with detailed course outlines
and innovative teaching tips, youll als6 find extensive
lists of recommended teaching resources.

AP Vertical Team Guides . . TA
An AP Vertical Team (APVT) is made up of teachers
from different grade levels who work together to
develop and implement a sequential curriculum in a
given discipline. The team’s goal is to help students
acquire the skills necessary for success in AP, In order to
help teachers and administrators who are interested in
establishing an APVT at their school, the College Board
has published three guides: AP Vertical Teams in Science,
Social Studies, Foreign Language, Studio Art, and Music
Theory: An Introduction ($12); A Guide for Advanced
Placement English Vertical Teams ($10); and Advanced
Placement Program Mathematics Vertical Teams Toolkit
($35). A discussion of the English Vertical Teams guide,
and the APVT concept, is also available on a 15-minute

VHS videotape ($10).

Sp, T
EssayPrep is available through the AP subject pages of

EssayPrep™

College Board Online (www.collegeboard.org/ap).
Students can select an essay topic, type a response, and
get an evaluation from an experienced reader. The service
is offered for the free-response portions of the AP
Biology, English Language and Composition, English
Literature and Composition, and U.S. History exams.
The fee is $15 per response for each evaluation. SAT 1I:
Writing topics are also offered for a fee of $10. Multiple

evaluations can be purchased at a 10-20% discount.

The College Handbook with College Explorer®
CD-ROM: $25.95 SBTA,C
Includes brief outlines of AP placement and credit
policies at two- and four-year colleges across the country.
Notes number of freshmen granted placement and/or
credit for AP in the prior year.

238

APCDs™: $49 (home version),

$450 (multi-network site license) SBT
These CD-ROMs are currently available for Calculus AB,
English Language, English Literature, European
History, Spanish Language and U.S. History. They each
include actual AP Exams, interactive tutorials, and
other features including exam descriptions, answers to
frequently asked questions, study skill suggestions, and
test-taking strategies. There is also a listing of resources
for further study and a planner for students to schedule
and organize their study time.

SBA,CT

Each year, AP conducts live, interactive video-

Videoconference Tapes: $15

conferences for various subjects, enabling AP teachers
and students to talk directly with the Development
Commitcees that design the AP Exams. Tapes of these
events are available in VHS format and are approxi-
mately 90 minutes long.

AP Pathway to Success (video available

in English and Spanish): $15 SET, A, C
This 25-minute-long video takes a look at the AP
Program through the eyes of people who know AD:
students, parents, teachers, and college admissions staff.
They answer such questions as “Why Do 1e27, “Who

teaches AP Courses?”, and “Is AP For You?”. College
students discuss the advantages they gained through
taking AP, such as academic self-confidence, writing
skills, and course credit. AP teachers explain what the
challenge of teaching AP courses means to them and
their school, and admissions staff explain how they view
students who have stretched themselves by taking AP
Exams. There is also a discussion of the impact that an
AP program has on an entire school and its community,
and a look at resources available to help AP teachers,
such as regional workshops, teacher conferences, and
summer institutes.))

What'’s in a Grade? (video): $15 T C
AP Exams are composed of multiple-choice questions
(scored by computer), and free-response questions that
are scored by qualified professors and teachers. This
video presents a behind-the-stenes look at the scoring
process featuring footage shot on location at the 1992
AP Reading at Clemson University and other Reading
sites. Using the AP European History Exam as a basis,
the video documents the scoring process. It shows AP
faculty consultants in action as they engage in scholarly
debate to define precise scoring standards, then train
others to recognize and apply those standards. Footage
of other subjects, interviews with AP faculty consule-
ants, and explanatory graphics round out the video.

— -
SN

1998-99 Development Committee

Susan Rodger Joseph Kmoch

Duke University Washington High School

Durham, North Carolina, Chair Milwaukee, Wisconsin

Alyce Brady Kathleen Larson

Kalamazoo College, Michigan Kingston High School
New York

Cathy Key

University of Texas Mark Weiss

San Antonio Florida International University
Miami

Chief Faculty Consultant: Mark Stehlik
Carnegie Mellon University, Pittsburgh, Pennsylvania

Chief Faculty Consultant Designate: Chris Nevison
Colgate University, Hamilton, New York

ETS Consultants: Fran Hunt, Esther Tesar

College Board Consultant: Gail Chapman

18060-004830 » S6OM20 » Printed in U.S.A.
L.N. 255167

