
T EAM
•••••••••••••

••••••••••••••

P ROBLEM
••••••••••••••••••••••••••

•••••••••••••••••••••••••••

Averaging
Numbers

Do not mark this sheet. Write all work on looseleaf.

PROBLEM A computer program must calculate the average of all numbers en-
tered as input.

Question What individual tasks must an averaging program do?

Before writing the complete averaging algorithm, focus on one part of
the problem.

EXERCISE 1 How will the computer know when the user has finished entering all
the numbers to be averaged?

a. Explain in English (not “computerese”) a method for handling the
problem of knowing how many numbers are to be averaged.

b. Give a second method for solving this problem.
c. Compare the two methods. Which method is more user-friendly

and why?
d. Optional for extra credit: If possible, give a third method for solv-

ing this problem.

EXERCISE 2 Use one of the methods you listed in Exercise 1 above as part of a
complete algorithm for solving the problem stated above (averaging
numbers). Note these points.

a. List the steps of the algorithm in English.

Examples Get a number from the user.
Print the average.

b. Make sure the steps of the algorithm are in the correct logical
order and are detailed enough so that a programmer could write
the program from your description without having to ask any
questions.

Note: It is not necessary that you know how to program every
step of the algorithm from your present knowledge of program-
ming.

Make a “scratch” copy of your algorithm first. Ask the teacher to scan
your scratch copy to see if you are on the right track. Then, after re-
vising and completing it, write a neat copy for submission.

Remember
You are not writing a program for a computer. You are writing an
algorithm for a human to read.

T EAM
•••••••••••••

••••••••••••••

P ROBLEM
••••••••••••••••••••••••••

•••••••••••••••••••••••••••

Putting Numbers into
Ascending Order

Do not mark this sheet. Write all work on looseleaf and trace paper.

PROBLEM Input any three numbers. Print the numbers in ascending
order.

EXERCISE 1 Draw a flow chart for a program that does what the prob-
lem above states. If two or more numbers are equal, print
the equal numbers in any order among themselves.

EXERCISE 2 Trace your flow chart from Exercise 1. Use the set of input
listed below. If the flow chart does not produce the correct
output for a set of input, revise it until it handles all input
sets correctly.

a. 2, 3, 4
b. 2, 4, 3
c. 3, 2, 4
d. 4, 2, 3 Suggestion Divide the trace in two. Let one
e. 3, 4, 2 team member trace using sets
f. 4, 3, 2 a-g and let the other team
g. 2, 2, 2 member test sets h-m.
h. 3, 2, 2
i. 2, 3, 2
j. 2, 2, 3
k. 3, 3, 2
l. 3, 2, 3
m.2, 3, 3

T EAM
•••••••••••••

•••••••••••••

P ROBLEM
••••••••••••••••••••••••

••••••••••••••••••••••••

String Searches

PROBLEM Search a block of text for the occurrence of a given “target” string.

Two string-searching algorithms will be compared: “brute force” and “Boyer-
Moore” (1977).

EXAMPLE 1 Use a “brute-force” method to determine if “pain” is contained in the string
“The rain in Spain falls”. List the steps in the process.

Solution a. Compare the last (fourth) character of “pain” to the fourth character of
“The rain in Spain”.
pain
The rain in Spain falls

^ “n” ≠ “ ”: no match

b. Shift “pain” one position to the right and test for a match again.
pain
The rain in Spain falls

^ “n” ≠ “r”: no match

c. Keep shifting one position to the right and testing until a match is found or
the end of the string being searched is reached.
pain

The rain in Spain falls
^ “n” ≠ “a”: no match
... (jump ahead)

pain
The rain in Spain falls

^ One character matches; compare the previous character
pain

The rain in Spain falls
^ Two characters match; compare the previous character

pain
The rain in Spain falls

^ Three characters match; compare previous character
pain

The rain in Spain falls
^ No match; continue tsting one position to the right of

“rain” (where the first match was found)
pain

The rain in Spain falls
^ “n” ≠ “ ”: no match

... (jump ahead)
pain

The rain in Spain falls
^ “n” ≠ “i”: no match

pain
The rain in Spain falls

^ One character matches; move left to see if the previous
characters in the two strings match

pain
The rain in Spain falls

^ Two characters match <continue over>
pain

The rain in Spain falls
^ Three characters match
pain

The rain in Spain falls
^ Four characters match; SUCCESS after 20 comparisons

EXERCISE 1 Apply the brute-force method to determine if “lain” is in “falls mainly in the
plain”. Follow Example 1 but do not skip steps by putting three dots (...).

EXAMPLE 2 Use the Boyer-Moore algorithm to determine if “pain” is contained in the string
“The rain in Spain falls”.

Solution a. Compare the “n” of “pain” to the fourth character of “The rain in Spain falls”.
pain
The rain in Spain falls

^ No match; since “ ” is not in “pain”, shift four positions to
the right

b. pain
The rain in Spain falls

^ One character matches; compare the previous character
c. pain

The rain in Spain falls
^ Two characters match; compare the previous character

d. pain
The rain in Spain falls

^ Three characters match; compare previous character
e. pain

The rain in Spain falls
^ No match; shift right four places from the position of the

first match of the sequence
f. pain

The rain in Spain falls
^ No match; shift right four places since “ ” is not in “pain”

g. pain
The rain in Spain falls

^ No match; shift right one place since “i” is one position
from the end of “pain”

h. pain
The rain in Spain falls

^ One character matches; compare the previous character
i. pain

The rain in Spain falls
^ Two characters match; compare the previous character

j. pain
The rain in Spain falls

^ Three characters match; compare previous characters
k. pain

The rain in Spain falls
^ SUCCESS after only 11 comparisons

EXERCISE 2 Use Boyer-Moore to determine if “lain” is in “falls mainly in the plain”. Write
out all the steps as in Example 2 above. How many fewer comparisons are
required by this method than the brute force method of Exercise 1?

T EAM
•••••••••••••

••••••••••••••

P ROBLEM
••••••••••••••••••••••••••

•••••••••••••••••••••••••••

Swapless, Pushless
Sorting

Do not mark this sheet. Write all work on looseleaf.

PROBLEM Sort a list of integers into descending order without swap-
ping any values or pushing values up or down.

EXERCISE 1 Develop an algorithm for the problem above. Keep in mind
the following.
1. Assume the list of integers is already in memory in an

array.
2. Express the algorithm in English. You may write it in

paragraph form or in outline form.
3. The teacher will be glad to look at what you have and

tell you whether you are on the right track, whether it is
specific enough, and so on.

EXERCISE 2
(optional for
extra credit)

Write, run, and debug a program that implements the sort-
ing algorithm you developed for Exercise 1.

EXERCISE 3
(optional for
extra credit)

Develop a sorting algorithm that does not involve swap-
ping numbers, pushing numbers up or down, or copying
numbers in the array to other locations.

T EAM
•••••••••••••

••••••••••••••

P ROBLEM
••••••••••••••••••••••••••

•••••••••••••••••••••••••••

Dealing
Cards

Do not mark this sheet. Write all work on looseleaf.

PROBLEM Develop several algorithms for dealing a deck of cards
and storing them in the computer’s memory.

EXAMPLE One algorithm for dealing a 52-card deck is as follows.
I. Set up a 52 x 2 array and clear all its cells to 0.
II. Repeat these steps until all 52 cards have been dealt.

A. Generate a random integer from 1 through 13; this integer
represents the rank of the card (1 = ace, 2 = deuce, ..., 11 =
jack, 12 = queen, 13 = king).

B. Generate a random integer from 1 through 4 to represent the
suit of the card (1 = clubs, 2 = diamonds, 3 = hearts, 4 =
spades).

C. Do a sequential search of the array to determine if this “card”
(combination of two integers) has already been dealt.
1. If it is has not been dealt, store the rank and suit numbers

in the next available row of the array.
2. If the card has been dealt, repeat steps A, B, and C.

EXERCISE 1 Outline an algorithm for dealing a 52-card deck and storing
the deal in the computer. The algorithm must be essentially
different from the one in the example above.

Examples of “essentially different” are using a one-dimensional array
instead of a two-dimensional array and/or filling the position in the
array in a different order from the example above (but not just back
to front instead of front to back).

EXERCISE 2 Do either of the following.
a. Outline another algorithm for dealing a deck of cards.

This algorithm must be significantly different from both
the example above and your algorithm for Exercise 1.

b. Write a program to implement the algorithm you outlined
in Exercise 1. Print the cards as they are “dealt” or after
all 52 have been stored. Submit a listing of the program
and the output of a sample run.

EXERCISE 3
(extra credit)

Do the other part of Exercise 2.

T EAM
•••••••••••••

•••••••••••••

P ROBLEM
••••••••••••••••••••••••

••••••••••••••••••••••••

Text File
Compression

Do not mark this sheet. Write all work on the separate answer sheet.

EXERCISE 1 The text file below has been condensed using the LZ algorithm. Use the
substitution table to recreate the original file. Note: _ means a space.

SCREEN 0
WIDTH 40
CLS
?% '? TOP]\
?~ '? MIDDLE∆\
?% '? BOTTOM]\
&
?%
∏#[?S THREE ROWS^
}R{

Token String Token String
~ DOWN ? PRINT
% ACROSS } FOR_
{ _=_1_TO_3 & END
SUB ^ _OF_X'S.
\ _BAR. @ NEXT_
[PROGRAM_] _HORIZONTAL
∏ 'THIS_ ∆ _VERTICAL

? "XXXXXXXXXXXX"
@R
& #
?~
∏#[?S A∆ BAR^
}F{
? "X"
@F
& #

EXERCISE 2 Condense the following file as much as possible. Use at least ten tokens. List
the table of replacements and the contents of the condensed file. Calculate
the number of characters saved by condensing the file using your scheme.

Storage of floating-point numbers is based on a standard
notation. The floating-point number is normalized; that is,
converted to a form consisting of a mantissa times the
proper power of ten. The exponent of ten is the
characteristic. So a floating-point number is stored as two
integers, one representing the mantissa and another for the
characteristic.

T EAM
•••••••••••••

•••••••••••••

P ROBLEM
••••••••••••••••••••••••

••••••••••••••••••••••••

Text File
Compression

Answer Sheet

Name(s) ___

EXERCISE 1 Write the unzipped file here. (Note: You may prefer to type and print the file.)

SCREEN 0
WIDTH 40
CLS

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

(over for Exercise 2)

EXERCISE 2 Complete your substitution table here. (Note: Only ten tokens are required.
However, space is available in the table for additional substitutions.)

Token String Token String

Write the condensed file here. (Note: You may prefer to type and print the file.)

__

__

__

__

__

__

__

__

__

__

__

__

A. Characters in original file = ________________
B. Characters in condensed file = ________________
C. Characters in substitution table = ________________

Characters saved: A – (B + C) = ________________

T EAM
•••••••••••••
•••••••••••••

P ROBLEM
••••••••••••••••••••••••
••••••••••••••••••••••••

Seven Segment
Display

Do not mark this sheet. Write all work on the separate sheets.

Most calculators, digital clocks, and timers use the “seven segment
display” format. In this setup, as the diagram at the right shows, there
are seven segments that can be lit in different combinations to form
the numerals 0 through 9. For example, “1” is formed by lighting seg-
ments b and c; “2” consists of segments a, b, g, e, and d. “9” is com-
posed of segments a, b, c, d, f, and g.

PROBLEM Design circuitry to run a seven-segment display for one digit. The
input consists of a four-bit digit (where each bit is an input line). The
outputs are a, b, c, d, e, f, and g of the seven segment diagram (1 =
light the segment, 0 = do not light the segment).

EXERCISE 1 Draw up the truth table for the problem. Note: There are only ten rows
of input in the table corresponding to the bits for the digits 0 through 9.
The first two rows and the last row of the table look like this. Copy
these and then complete the other seven rows.

In put Out puts

Digit b3 b2 b1 b0 a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0
...

9 1 0 0 1 1 1 1 1 0 1 1

EXERCISE 2 From the truth table (which is in effect seven truth tables in one) write
seven Boolean expressions, one for a, one for b, and so on. Note: In
most cases it is easier to use the complement approach.

EXERCISE 3 Use maps to simplify the expressions, if possible. Draw the seven min-
imal circuits, one for each output segment. Note: Include the maps with
your solution.

