

AP® Computer Science A
2007 Free-Response Questions

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and
teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement
Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied
in all of its programs, services, activities, and concerns.

© 2007 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, SAT, and the
acorn logo are registered trademarks of the College Board. PSAT/NMSQT is a registered trademark of the College Board and
National Merit Scholarship Corporation.
Permission to use copyrighted College Board materials may be requested online at:
www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-2-

COMPUTER SCIENCE A
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN JAVA.

Notes:
• Assume that the classes listed in the Quick Reference found in the Appendix have been imported where

appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods

are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in classes

defined in that question. Writing significant amounts of code that can be replaced by a call to one of these
methods may not receive full credit.

 1. A positive integer is called a "self-divisor" if every decimal digit of the number is a divisor of the number, that

is, the number is evenly divisible by each and every one of its digits. For example, the number 128 is a self-
divisor because it is evenly divisible by 1, 2, and 8. However, 26 is not a self-divisor because it is not evenly
divisible by the digit 6. Note that 0 is not considered to be a divisor of any number, so any number containing a 0
digit is NOT a self-divisor. There are infinitely many self-divisors.

public class SelfDivisor
{
 /** @param number the number to be tested
 * Precondition: number 0>
 * @return true if every decimal digit of number is a divisor of number;
 * false otherwise
 */
 public static boolean isSelfDivisor(int number)
 { /* to be implemented in part (a) */ }

 /** @param start starting point for values to be checked
 * Precondition: start 0>
 * @param num the size of the array to be returned
 * Precondition: num 0>
 * @return an array containing the first num integers ≥ start that are self-divisors
 */
 public static int[] firstNumSelfDivisors(int start, int num)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-3-

(a) Write method isSelfDivisor, which takes a positive integer as its parameter. This method returns
true if the number is a self-divisor; otherwise, it returns false.

 Complete method isSelfDivisor below.

 /** @param number the number to be tested
 * Precondition: number 0>
 * @return true if every decimal digit of number is a divisor of number;
 * false otherwise
 */
 public static boolean isSelfDivisor(int number)

(b) Write method firstNumSelfDivisors, which takes two positive integers as parameters, representing
a start value and a number of values. Method firstNumSelfDivisors returns an array of size num
that contains the first num self-divisors that are greater than or equal to start.

 For example, the call firstNumSelfDivisors(10, 3) should return an array containing the values
11, 12, and 15, because the first three self-divisors that are greater than or equal to 10 are 11, 12, and 15.

 In writing firstNumSelfDivisors, assume that isSelfDivisor works as specified, regardless
of what you wrote in part (a).

 Complete method firstNumSelfDivisors below.

 /** @param start starting point for values to be checked
 * Precondition: start 0>
 * @param num the size of the array to be returned
 * Precondition: num 0>
 * @return an array containing the first num integers ≥ start that are self-divisors
 */
 public static int[] firstNumSelfDivisors(int start, int num)

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-4-

 2. This question involves reasoning about the code from the Marine Biology Simulation case study. A copy of the
code is provided as part of this exam.

 A PounceFish is a type of fish that looks for prey and then "pounces" on it. A PounceFish can see only

a limited distance in its forward direction. If the PounceFish sees another fish, it rushes forward and eats the
nearest one that it sees, ending up in the location where its prey was originally located. If the PounceFish
does not see another fish, it acts as a Fish.

 The PounceFish class is shown below.

public class PounceFish extends Fish
{
 private int range; // the distance that a PounceFish can see; range > 0

 /** Looks ahead range locations in current direction
 * @return the nearest fish in that direction within range (if any);
 * null if no such fish is found
 */
 private Fish findFish()
 { /* to be implemented in part (a) */ }

 /** Acts for one step in the simulation
 */
 public void act()
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-5-

 The following diagrams show an example environment containing a PounceFish (represented by P) and
other fish (represented by F1, F2, etc.). The direction of the PounceFish is indicated by the character
">" showing that, in this example, the PounceFish is facing east. If the PounceFish can see 2 or more
locations ahead in its forward direction, it will see fish F3 as shown in the first diagram and will move to that
location to eat it, causing F3 to die as shown in the second diagram.

Environment before the PounceFish acts

 North

 0 1 2 3 4 5

 0 F1

West 1 F2 P> F3 F4 East

 2 F5

 3

 South

Environment after the PounceFish acts

 North

 0 1 2 3 4 5

 0 F1

West 1 F2 P> F4 East

 2 F5

 3

 South

 If the PounceFish in the first diagram above could see only 1 location ahead, it would not see any prey and

therefore would act as an ordinary fish.

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-6-

(a) Write the PounceFish method findFish. If any fish are located within range locations in the
direction that the PounceFish is currently facing, the method returns the nearest of these. Otherwise, the
method returns null.

 Complete method findFish below.

 /** Looks ahead range locations in current direction
 * @return the nearest fish in that direction within range (if any);
 * null if no such fish is found
 */
 private Fish findFish()

(b) Override the act method for the PounceFish class. A PounceFish attempts to find a fish that it
can eat. If it finds such a fish, the PounceFish eats it (causing it to die) and moves to its location. If the
PounceFish does not find a fish that it can eat, it acts as an ordinary fish.

 In writing act, assume that findFish works as specified, regardless of what you wrote in part (a).

 Complete method act below.

 /** Acts for one step in the simulation
 */
 public void act()
 {
 if (! isInEnv())
 return;

 // Write your code below.

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-7-

 3. Consider a system for processing student test scores. The following class will be used as part of this system and
contains a student's name and the student's answers for a multiple-choice test. The answers are represented as
strings of length one with an omitted answer being represented by a string containing a single question mark
("?"). These answers are stored in an ArrayList in which the position of the answer corresponds to the
question number on the test (question numbers start at 0). A student's score on the test is computed by comparing
the student's answers with the corresponding answers in the answer key for the test. One point is awarded for
each correct answer and ¼ of a point is deducted for each incorrect answer. Omitted answers (indicated by
"?") do not change the student's score.

public class StudentAnswerSheet
{
 private ArrayList<String> answers; // the list of the student's answers

 /** @param key the list of correct answers, represented as strings of length one
 * Precondition: key.size() is equal to the number of answers in this answer sheet
 * @return this student's test score
 */
 public double getScore(ArrayList<String> key)
 { /* to be implemented in part (a) */ }

 /** @return the name of the student
 */
 public String getName()
 { /* implementation not shown */ }

 // There may be fields, constructors, and methods that are not shown.
}

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-8-

 The following table shows an example of an answer key, a student's answers, and the corresponding point values
that would be awarded for the student's answers. In this example, there are six correct answers, three incorrect
answers, and one omitted answer. The student's score is ((6 * 1) - (3 * 0.25)) = 5.25 .

Question number 0 1 2 3 4 5 6 7 8 9

key "A" "C" "D" "E" "B" "C" "E" "B" "B" "C"

answers "A" "B" "D" "E" "A" "C" "?" "B" "D" "C"

Points awarded 1 – 0.25 1 1 – 0.25 1 0 1 – 0.25 1

(a) Write the StudentAnswerSheet method getScore. The parameter passed to method getScore
is an ArrayList of strings representing the correct answer key for the test being scored. The method
computes and returns a double that represents the score for the student's test answers when compared
with the answer key. One point is awarded for each correct answer and ¼ of a point is deducted for each
incorrect answer. Omitted answers (indicated by "?") do not change the student's score.

 Complete method getScore below.

 /** @param key the list of correct answers, represented as strings of length one
 * Precondition: key.size() is equal to the number of answers in this answer sheet
 * @return this student's test score
 */
 public double getScore(ArrayList<String> key)

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-9-

(b) Consider the following class that represents the test results of a group of students that took a multiple-choice
test.

public class TestResults
{
 private ArrayList<StudentAnswerSheet> sheets;

 /** Precondition: sheets.size() 0> ;
 * all answer sheets in sheets have the same number of answers
 * @param key the list of correct answers represented as strings of length one
 * Precondition: key.size() is equal to the number of answers
 * in each of the answer sheets in sheets
 * @return the name of the student with the highest score
 */
 public String highestScoringStudent(ArrayList<String> key)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

 Write the TestResults method highestScoringStudent, which returns the name of the

student who received the highest score on the test represented by the parameter key. If there is more than
one student with the highest score, the name of any one of these highest-scoring students may be returned.
You may assume that the size of each answer sheet represented in the ArrayList sheets is equal to
the size of the ArrayList key.

 In writing highestScoringStudent, assume that getScore works as specified, regardless of
what you wrote in part (a).

 Complete method highestScoringStudent below.

 /** Precondition: sheets.size() 0> ;
 * all answer sheets in sheets have the same number of answers
 * @param key the list of correct answers represented as strings of length one
 * Precondition: key.size() is equal to the number of answers
 * in each of the answer sheets in sheets
 * @return the name of the student with the highest score
 */
 public String highestScoringStudent(ArrayList<String> key)

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-10-

 4. In this question, you will complete methods in classes that can be used to represent a multi-player game. You
will be able to implement these methods without knowing the specific game or the players' strategies.

 The GameState interface describes the current state of the game. Different implementations of the interface
can be used to play different games. For example, the state of a checkers game would include the positions of all
the pieces on the board and which player should make the next move.

 The GameState interface specifies these methods. The Player class will be described in part (a).

public interface GameState
{
 /** @return true if the game is in an ending state;
 * false otherwise
 */
 boolean isGameOver();

 /** Precondition: isGameOver() returns true
 * @return the player that won the game or null if there was no winner
 */
 Player getWinner();

 /** Precondition: isGameOver() returns false
 * @return the player who is to make the next move
 */
 Player getCurrentPlayer();

 /** @return a list of valid moves for the current player;
 * the size of the returned list is 0 if there are no valid moves.
 */
 ArrayList<String> getCurrentMoves();

 /** Updates game state to reflect the effect of the specified move.
 * @param move a description of the move to be made
 */
 void makeMove(String move);

 /** @return a string representing the current GameState
 */
 String toString();

}

 The makeMove method makes the move specified, updating the state of the game being played. Its parameter

is a String that describes the move. The format of the string depends on the game. In tic-tac-toe, for
example, the move might be something like "X-1-1", indicating an X is put in the position (1, 1).

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.

-11-

(a) The Player class provides a method for selecting the next move. By extending this class, different
playing strategies can be modeled.

public class Player
{
 private String name; // name of this player

 public Player(String aName)
 { name = aName; }

 public String getName()
 { return name; }

 /** This implementation chooses the first valid move.
 * Override this method in subclasses to define players with other strategies.
 * @param state the current state of the game; its current player is this player.
 * @return a string representing the move chosen;
 * "no move" if no valid moves for the current player.
 */
 public String getNextMove(GameState state)
 { /* implementation not shown */ }
}

 The method getNextMove returns the next move to be made as a string, using the same format as that

used by makeMove in GameState. Depending on how the getNextMove method is implemented,
a player can exhibit different game-playing strategies.

 Write the complete class declaration for a RandomPlayer class that is a subclass of Player. The
class should have a constructor whose String parameter is the player's name. It should override the
getNextMove method to randomly select one of the valid moves in the given game state. If there are no
valid moves available for the player, the string "no move" should be returned.

2007 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2007 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

-12-

(b) The GameDriver class is used to manage the state of the game during game play. The GameDriver
class can be written without knowing details about the game being played.

public class GameDriver
{
 private GameState state; // the current state of the game

 public GameDriver(GameState initial)
 { state = initial; }

 /** Plays an entire game, as described in the problem description
 */
 public void play()
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

 Write the GameDriver method play. This method should first print the initial state of the game. It

should then repeatedly determine the current player and that player's next move, print both the player's name
and the chosen move, and make the move. When the game is over, it should stop making moves and print
either the name of the winner and the word "wins" or the message "Game ends in a draw" if
there is no winner. You may assume that the GameState makeMove method has been implemented so
that it will properly handle any move description returned by the Player getNextMove method,
including the string "no move".

 Complete method play below.

 /** Plays an entire game, as described in the problem description
 */
 public void play()

STOP

END OF EXAM

