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Introduction
Dolores Gende

Parish Episcopal School 
Dallas, Texas

The objective of these Special Focus Materials is to present a detailed overview 

of the use of multiple representations in various topics of mechanics and energy 

(thermodynamics). The use of multiple representations of data and phenomena in 

physics is a powerful strategy to help students develop a deeper understanding 

of concepts and effective problem-solving skills. Some of the most commonly 

used multiple representations in physics are verbal descriptions, mathematical 

interpretations, pictures, graphs, motion diagrams, free-body diagrams, circuit 

diagrams, and geometric optics ray tracing.

The first article, by Eugenia Etkina, David Rosengrant, and Alan Van Heuvelen, 

describes a learning strategy centered on multiple representations for kinematics 

and dynamics. The authors first give a general outline of the use of multiple 

representations before focusing on a detailed application of various representations 

in linear kinematics and both linear and circular motion dynamics. Special emphasis 

is given to qualitative analysis with the use of motion diagrams and free-body 

diagrams. The authors suggest various pedagogical approaches that include examples 

of formative assessments. In the final part of this article, the authors include physics 

education research data on the implementation of multiple representations in 

summative assessments at the college level. 

The second article, by Randall Knight, focuses on the topic of energy as it 

applies to mechanics and the first law of thermodynamics. The article is divided 

into four lessons that provide guidance to teachers on how to introduce and develop 

the concepts of energy and work with the aid of verbal descriptions, energy bar 

charts, ranking tasks, and pV diagrams. The first lesson deals with conservation of 

energy in mechanical systems. Lesson two presents the connection between work 



and thermal energy. The last two lessons include a detailed study of the first law of 

thermodynamics and energy flow in heat engines. Examples of formative assessments 

are given in each section.
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Using Multiple Representations to Improve 
Student Learning in Mechanics
Eugenia Etkina and Alan Van Heuvelen

Rutgers University 
New Brunswick, New Jersey

David Rosengrant

Kennesaw State University 
Kennesaw, Georgia

Introduction

The conceptual knowledge in physics courses is often found in an abstract symbolic 

form. The symbols have precise meanings and must be combined in rules that are 

used correctly. In contrast, the human mind relates best to picture-like representations 

that emphasize qualitative features but not detailed, precise information.1 If we want 

students to learn the symbolic representations used in the practice of physics (for 

example, the mathematical descriptions of processes), we have to link these abstract 

ways of describing the world to more concrete descriptions. 

This article describes a learning strategy that emphasizes multiple ways of 

representing processes for the concepts of kinematics and dynamics. We start with an 

overview of this multiple representation strategy. We then look in greater detail at how 

the strategy can be integrated into instruction in kinematics, linear dynamics, and 

circular motion dynamics. The discussion will provide many examples of formative 

assessments to help teachers evaluate and modify their instruction if necessary, and 

for students to evaluate and modify their learning if necessary. Finally, assessment 

1.  J. H. Larkin and H. Simon, “Why a Diagram Is (Sometimes) Worth Ten Thousand Words,” Cognitive Science 11 (1997): 65–99.
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outcomes where the strategy has been used are presented, along with suggestions 

for summative assessments that teachers can use to evaluate the learning of their 

students. 

Overview of Multiple Representations for Kinematics 
and Dynamics

There is considerable research to show that students from high school to honors 

college manage to solve problems with little understanding of the concepts being 

used.2 One difficulty is that the symbols in the mathematical equations have little 

meaning for the students.3 One way to address this difficulty is to have students 

learn to represent physical processes in multiple ways and learn to convert from one 

representation to another in any direction.4 This helps students make connections 

between concrete ways of representing a process (pictures and diagrams) and more 

abstract ways of representing the same processes (graphs and equations).  Additional 

literature on translating between representations and student learning can be found 

in Appendix A.

2.  E. Mazur, Peer Instruction: A User’s Manual (Upper Saddle River, New Jersey: Prentice Hall, 1997).
3.   A. Van Heuvelen, “Learning to Think Like a Physicist: A Review of Research-Based Instructional  

Strategies,” American Journal of Physics 59 (1991a): 891–97; A. Van Heuvelen, “Overview, Case Study Physics,” American 
Journal of Physics 59 (1991b): 898–907.

4.  Xueli Zou, The Use of Multiple Representations and Visualizations in Student Learning of Introductory Physics. Unpublished 
Ph.D. dissertation, The Ohio State University, 2000.
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Kinematics Representations

FIGuRE 1. A KINEMATIcS PROcESS IS REPRESENTED IN MuLTIPLE wAyS

Figure 1 shows a multiple-representation description of a moderately simple 

one-dimensional kinematics problem: describing the motion of a car as it slows to 

a stop. We use each successive representation to help construct the next. We first 

convert the words in the problem statement to a sketch where we include known 

information and identify the unknowns. 

This is often the most difficult task for students. The mind can supposedly hold 

five to seven chunks of information. Experts with years of experience group many 
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small ideas together in one of these chunks.5 Thus, their seven chunks are actually 

much bigger. Each chunk for a novice is small. Novices often cannot assimilate 

understanding about a whole process with these few small chunks stored in their 

mind, and so they must go back multiple times to the problem statement. It becomes 

easier to solve the problem by finding an equation that seems appropriate and 

plugging the known information into that equation—the infamous plug-and-chug 

problem-solving strategy. Constructing a sketch of the process allows novices to see 

the problem situation without having to rely on storing the information in their mind. 

They can then focus on using a more expert-like strategy to solve the problem.6 

In kinematics, students can use the sketch and words to construct a motion 

diagram. A motion diagram consists of three elements. The first element is a 

sequence of dots that indicate qualitatively the positions of the moving object at 

evenly spaced clock readings. The second element is a set of arrows that indicate 

the direction of motion and the relative magnitude of the object’s speed. These are 

called 

v  arrows. We make them relatively thin. Third, there are thicker arrows that 

indicate the change in velocity of an object. These are called ∆

v  arrows. A ∆


v  arrow 

in the same direction as the velocity arrows indicates that the velocity is increasing 

in magnitude; a ∆

v  in the direction opposite to the direction of motion indicates that 

velocity is decreasing in magnitude. The ∆

v  arrow has the same direction as the 

acceleration of an object. The signs of the velocity and acceleration depend on how 

the 

v  and ∆


v  arrows are oriented relative to a coordinate axis that is used both with 

the sketch and with the motion diagram. Note, for example, that the acceleration 

would be positive if an object were moving in the negative direction at decreasing 

speed. This would be difficult to understand without the help of a motion diagram. 

The motion diagram serves as a concrete “referent” for the kinematics quantities used 

to describe the process.

Students can also use kinematics graphs to represent the motion. They are 

probably the most difficult type of graph used in physics because they look nothing 

like the actual motion.7 We prefer to use them to represent actual position–time 

data collected for moving objects. To use the motion diagram to construct a graph 

and then link the diagram and graph to each other, a student can place the motion 

diagram along the vertical axis to represent the position of an object and then use the 

horizontal axis to represent the time or clock reading. When a position-versus-time 

5.  C. Abel, “Heuristics and Problem Solving,” New Directions for Teaching and Learning 95 (2003): 53–58. 
6.   M. Chi, P. Feltovich, and R. Glaser, “Categorization and Representation of Physics Problems by  

Experts and Novices,” Cognitive Science 5 (1981): 121–52; J. Larkin, J. McDermott, D. Simon, and H. Simon, “Expert and 
Novice Performance in Solving Physics Problems,” Science 208 (1980): 1335–42.

7.  R. Beichner, “Testing Student Interpretation of Kinematics Graph,” American Journal of Physics 62:8 (1994): 750–62.
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graph is constructed this way, it helps students avoid confusing the position of an 

object at every instant with the graph line. The graphs of velocity versus time can 

help construct kinematics equations for constant velocity and constant acceleration 

motion. Students can correlate the slopes of the position graphs with the directions 

and magnitudes of the velocity, and the slopes of the velocity graphs with the 

directions and magnitudes of the acceleration arrows in the motion diagram. The 

diagram improves understanding of the graphs.

Students can next construct kinematics equations. They check signs and values 

of the quantities in the equations against the motion diagrams and the graphs. Note 

in Figure 1 that the acceleration is positive because the car is going in the negative 

direction and its speed is decreasing. The reason for the sign is made clear from the 

motion diagram and is consistent with the slope of the velocity-versus-time graph. 

Students should learn to use these different representations of motion to evaluate their 

work; in fact, the best students do, and it is a skill that is especially helpful in solving 

difficult problems.8 

Linear Dynamics Representations

FIGuRE 2. A DyNAMIcS PRObLEM IS REPRESENTED IN MuLTIPLE wAyS

An example of a multiple representation description of a moderately simple 

one-dimensional dynamics problem is shown in Figure 2, which describes the 

8.    D. Rosengrant, E. Etkina, and A. Van Heuvelen, “Case Study:  Students’ Use of Multiple Representations in Problem 
Solving” (paper presented at the  2005 Physics Education Research Conference, Salt Lake City, UT), in AIP Conference 
Proceedings, Volume 818, eds. P. Heron, J. Marx, and L. McCullough (Melville, NY: American Institute of Physics, 2006), 
49–52.
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dynamics of an elevator car as it ascends and approaches the floor on which it will 

stop. Notice how we use each successive representation to support construction of 

the next representation. Once again, we convert the words in the problem statement 

to a sketch where we include much of the known information provided in the problem 

statement and identify the unknown quantity. 

We circle lightly in the sketch a system object that is the subject of interest in 

this process. We then find all objects with which the system object interacts (either 

directly touching or without the direct contact if there is a long-range force, such as 

the gravitational force that the earth exerts on the object). Then we use this sketch 

and the identified system to construct a new representation that is called a free-body 

diagram. In the literature, many different ways are suggested for constructing free-

body diagrams.  This literature can be found in Appendix A at the end of this article.  

The method that we use is based on work by Heller and Reif9 and further developed by 

Van Heuvelen and Etkina.10 

We start to draw the diagram by putting a dot that represents the system object 

on the side of the sketch of the situation. We then use the arrows placed with their 

tail on the dot to indicate the interactions (the forces) of the objects outside the 

system with the system object. There are two very important ideas at this moment. 

First, the relative lengths of the force arrows should be approximately consistent with 

the magnitude of the forces (if the information is known). Second, all force arrows 

are labeled with a letter F, and there are two subscripts indicating the object that 

exerts the force and the system object on which the force is exerted. For example, for 

the force exerted by the earth on the object, we write F
E on O

, where E indicates the 

earth and O stands for the system object. We do not use such terms as the weight 

of an object or the tension in a rope because they might reinforce some students’ 

pre-existing idea that forces belong to objects. This way of labeling forces later helps 

students identify Newton’s third law of force pairs. 

We suggest that students construct a motion diagram next to a free-body 

diagram. The direction of the velocity change arrow on the motion diagram should 

match the direction of the net force that emerges from the free-body diagram. This 

helps students develop the habit of evaluating the consistency of the diagrams and 

also helps decide the lengths of the force arrows. We suggest that instructors use 

separate qualitative reasoning activities to help students check the consistency of 

 9.  J. Heller and F. Reif, “Prescribing Effective Human Problem-Solving Processes: Problem Description in Physics,” 
Cognition and Instruction 1 (1984): 177–216.

 10.  A. Van Heuvelen and E. Etkina, Active Learning Guide, Student Edition (San Francisco: Addison Wesley Longman, 2006).
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their free-body diagrams and their motion diagrams. Examples of such activities can 

be found in the literature.11

Students can next use the free-body diagram to help apply Newton’s second law 

in component form. This helps students avoid mistakes such as calculating the force 

that a cable exerts on an accelerating elevator by setting the cable tension F
cable 

equal 

to ma
y
, and neglecting the gravitational force that the earth exerts on the elevator. 

Once students have learned to construct these different representations, they 

need to learn to use them to evaluate their work. For example, is the velocity change 

arrow in the motion diagram pointing in the same direction as the net force in 

the free-body diagram? Have all of the forces been included in the application of 

Newton’s second law in component form? Students need to practice converting one 

representation to others—for example, from equations to a free-body diagram or to 

a word description of a problem. Examples of such activities can be found in the 

literature.12

Finally, we want to caution instructors who use the wording of Newton’s second 

law as “F = ma,” or in words, “Force is mass times acceleration.” The wording leads 

students to believe that they can find any force by multiplying the object’s mass by 

its acceleration. Consequently, when they read in a problem that they need to find 

some force and they see that the acceleration is given, they multiply the mass by 

acceleration to find that force. Formulating the law as “the sum of all forces exerted on 

an object is equal to the objects’ mass times acceleration” or, even better, “the object’s 

acceleration is directly proportional to the net force and inversely proportional to the 

mass of an object,” helps avoid this common difficulty.

11.  Van Heuvelen, “Learning to Think Like a Physicist,” 891–97; Van Heuvelen, “Overview, Case Study Physics,” 898–907;  
Van Heuvelen and Etkina, Active Learning Guide.

12. See citation 11.
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Circular Motion Dynamics

FIGuRE 3. A cIRcuLAR DyNAMIcS PROcESS REPRESENTED IN MuLTIPLE wAyS

Figure 3 shows a multiple representation description of a circular dynamics 

problem. We use each successive representation to help construct the next 

representation. We start by converting the words in the problem statement to a sketch 

where we put the known information and identify the unknown. 

We then circle a system object in the sketch; it is the object of interest for our 

analysis. Then we use this sketch and system identification to construct a free-body 

diagram for that system object. The free-body diagram indicates with arrows and 

labels all objects outside the system that interact with the system object. Again, we 

make a special effort to have the relative lengths of the force arrows consistent with 

the magnitudes of the forces, but this is not always possible. The arrows for these 

interactions are again labeled with subscripts indicating two objects: the object that 

exerts a force on the system object and the system object. 

To analyze the motion qualitatively we use a two-dimensional version of a motion 

diagram.13 This diagram is especially helpful if a student needs to determine the 

direction of the acceleration at a particular point along the circular path. We draw 

velocity arrows just before that point, just after the point, and tangent to the path. 

We place the arrows on the actual path before and after the point at which we are 

determining the direction of the acceleration. We make their lengths proportional to 

13. Heller and Reif, “Prescribing Effective Human Problem-Solving Processes,” 177–216.

Diagram
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the object’s speed. Then we redraw these arrows tail to tail on a separate figure off to 

the side. A velocity change arrow ∆

v  is drawn from the head of the “before” arrow to 

the head of the “after” arrow. The acceleration 

a  is the ratio of the velocity change  

∆  to the time interval ∆t needed for that change (

a  = ∆


v /∆t). The direction of the  

∆  arrow and consequently the direction of acceleration should be consistent with 

the direction of the net force in the free-body diagram. This is a very useful strategy 

that students can practice on separate qualitative reasoning questions in which they 

check the magnitudes of forces. 

After students check their qualitative motion analysis and their free-body 

diagram for consistency, they can apply Newton’s second law symbolically in 

component form and then evaluate the symbols. They need to apply the same 

reasoning strategy as in linear motion: There should be as many terms on the force 

side of the equation as there are force arrows in the diagram. Circular motion is 

an especially difficult conceptual area for students. We find it very helpful to have 

students represent different circular motion processes in multiple ways—so-called 

goal-free problems,14 as described below.

Helping Students Learn and Apply These Representations  
with Formative Assessment

In the previous section we described a variety of types of representations. In this 

section, we provide explicit instructions for constructing and using some of the 

representations, including activities that can be used in the classroom to assess 

and modify the student learning as it progresses, if needed. Early in a unit of study, 

students can be asked to focus on the more qualitative representations and to use 

them for qualitative reasoning activities.

14.  Van Heuvelen, “Learning to Think Like a Physicist,” 891–97; Van Heuvelen, “Overview, Case Study Physics,” 898–907.
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Motion Diagrams

FIGuRE 4. cONSTRucTING A MOTION DIAGRAM

Figure 4 provides instructions for constructing a motion diagram. Students 

first observe a person walking slowly and dropping beanbags every second. Then 

they discuss how they can use the beanbags to represent the motion so that another 

person who did not see the motion could visualize it. Next, the instructor shows the 

students how to construct a formal diagram. Finally, students observe the following 

different types of motion and construct motion diagrams for different parts of the 

motion using the sequence of activities found in the literature:15

a dynamics cart moving at constant speed on track; •	

the cart being pushed gently so it moves faster and faster; •	

the cart pushed gently opposite its velocity so that it moves slower and slower;•	

a ball thrown vertically upward, as it is on the way up;•	

a ball thrown vertically upward, as it is on the way down; and•	

 a ball thrown vertically upward, just before reaching the top of its vertical •	

trajectory and just after (to see that the acceleration is down for the entire trip). 

15. Van Heuvelen and Etkina, Active Learning Guide, 2–17.

1.
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Another useful activity is to ask students to determine the signs of the moving 

object’s position, velocity, and velocity change relative to the coordinate axis at the 

positions of the five open dots in the motion diagrams in Figure 5. They can also be 

asked to describe motion depicted by a given motion diagram, as in Figure 6. 

For formative assessment activities, you can give students a motion diagram for 

a complicated motion (for example, an object moves at a constant velocity and then 

slows down to a stop) and ask them to devise a story about this motion. Another 

approach is to give a list of short descriptions of different motions and a list of motion 
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diagrams, and then ask students to match them. Finally, you can ask students to  

draw a motion diagram for an object moving to the left and slowing down, and then 

moving to the right and speeding up. Then you can ask whether the direction of the  

∆

v  arrows on the diagram indicates whether an object is speeding up or slowing 

down. After students learn graphs, formative assessment activities can involve 

moving from one representation to another, especially from velocity-versus-time 

graphs to motion diagrams and back.

Free-Body Diagrams

To learn to draw free-body diagrams, students can start by holding a tennis ball and 

a medicine ball. Then they need to identify the objects that interact with each ball 

and represent the interactions of the balls with arrows. At this point, students often 

express the idea that the air is one of the objects interacting with the balls and that 

it pushes down on the ball. One can test this idea by having an object attached to a 

spring, first in the air and then under a vacuum jar. (For a video of this experiment, go 

to http://paer.rutgers.edu/pt3/movies/bottle_in_vacuum.mov.) After students realize 

that the air has a negligible effect, students can proceed to represent the interaction 

of the balls with the earth (here it is important to identify the earth as a pulling object 

and not a mysterious “gravity” that students like so much) and the hand. The lengths 

of the arrows for the two balls represent different efforts that students have to exert to 

keep the medicine ball steady compared to the tennis ball. After students draw the 

arrows, the teacher can tell them to redraw the picture with a dot instead of the object 

of interest and explain how to label the arrows. At this point, students can be given 

explicit instructions for constructing free-body diagrams (see Figure 7).

FIGuRE 7. cONSTRucTING A FREE-bODy DIAGRAM
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Having learned the method, students can be asked to consider two books 

sitting on a tabletop, with one book on top of the other. They should draw a free-body 

diagram of each book. Have them start with the actual books on a table, then ask 

them to draw a sketch of the situation and circle one book that is the object of interest. 

Drawing the circle is not trivial—it should carefully pass between the contacting 

surface of the system object and an outside touching object in the environment. The 

arrows shown in the diagram should be due to forces exerted by an object outside 

the system that is touching the object on the inside. For example, for the book on the 

table, students should show one upward arrow due to the force exerted by the table on 

the bottom book (F
T on BB

), and two downward forces due to the force exerted by the top 

book on the bottom book (F
TB on BB

) and the gravitational force exerted by the earth on 

the bottom book (F
E on BB

). 

After students have completed the above steps, have them construct a free-body 

diagram for each block shown in Figure 8 (ignore friction). Block 1 exerts a force on 

block 2. The person is not touching block 2 and does not exert a force on it. 

An instructor can use free-body diagrams and motion diagrams together to help 

students understand the relationship between an unbalanced force and the changes 

in motion of an object, not the motion itself. Some useful experiments for analysis here 

are motion diagrams and free-body diagrams for a low-friction cart on a track that is: 

first being pushed gently by a person so it moves faster and faster; •	

then moving at constant velocity with no pushing; and •	

then being pushed gently opposite its motion so its speed decreases. •	



16  

SPEcIAL FOcuS: Multiple Representations of Knowledge

For formative assessment, you can ask students to predict the change in the 

reading of a scale that is lifting an object from rest and then slowing to a stop. For a 

successful analysis of this situation, students need to draw a motion diagram, a free-body 

diagram, and a velocity–time graph. To test their reasoning, they can view the video of 

the scenario at http://paer.rutgers.edu/pt3/experiment.php?topicid=3&exptid=172.

To help students construct and apply the idea that there is no need to draw 

an extra force in the direction of motion, you can use a projectile. Ask students 

to construct a free-body diagram for a projectile at different places along its path. 

They often include force arrows in the direction of motion but cannot identify the 

other object exerting the force. As they remember that the word “force” denotes an 

interaction between two objects, students should understand that there is no force in 

the direction of motion because they cannot identify another object pushing or pulling 

the projectile in that direction. 

Velocity Subtraction Acceleration Diagrams

Figure 9 provides instructions for using a diagrammatic velocity subtraction 

method to estimate the acceleration direction during two-dimensional motion.16 These 

diagrams are very useful in helping students understand that there is acceleration 

during circular motion of constant speed. Note that students tend to draw such 

diagrams with very short arrows, making them difficult to use and understand. Some 

draw the velocity change arrow from the head of the final velocity to the head of the 

16. Heller and Reif, “Prescribing Effective Human Problem-Solving Processes,” 177–216.
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initial velocity, which is the opposite of the direction in which they should be drawn. 

For practice they can be given an activity such as that shown in Figure 10.17

We use these diagrams not only to determine the direction of the acceleration 

during curvilinear motion as we discussed above, but also to help determine the 

magnitude of the centripetal acceleration—to see the v 2 dependence (see Figure 

11) and the 1/r dependence (see Figure 12). This is a concrete way to arrive at the 

conclusion that a
c
 = v 2/r.

17.  D. T. Brookes, “The Role of Language in Learning Physics” (Unpublished Ph.D. dissertation, Rutgers, The State University 
of New Jersey, 2006), 190.
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A good formative assessment combines the velocity subtraction technique and 

the free-body diagram. This could be a question that arises when students need to 

construct a free-body diagram for a pendulum bob as it passes the lowest point of its 
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swing. After students determine the direction of the acceleration and then adjust the 

length of the arrows, they can test their reasoning using a videotaped experiment 

such as the one at http://paer.rutgers.edu/pt3/experiment.php?topicid=5&exptid=59. If 

you do this activity with the students, you will notice again that some of them include 

a force in the direction of motion. Ask the students to identify the object causing this 

force. They might call it the force of motion, but they might not find another object 

causing the force. If they cannot find an object that interacts with the pendulum bob 

to create a force, the force has to be removed from the diagram.

Research indicates that this problem is very difficult for the students. In one 

survey, about 60 percent of engineering students at the end of their study included 

a horizontal arrow in the direction of motion;18 however, in a course where the above 

methods were used, fewer than 5 percent of the students made the same mistake.19

Using Free-Body Diagrams to Apply Newton’s Second Law in  
Component Form

Free-body diagrams help students write Newton’s second law in component form. 

Figure 13 describes a situation in which the component form of analysis is required. 

Students visualize the components by drawing their projections on axes and then 

use the component equations to confirm the results mathematically. Then they can 

work on an assignment where they need to use a sketch together with a partially 

18. Van Heuvelen, “Overview, Case Study Physics,” 898–907.
19. Brookes, “The Role of Language in Learning Physics,” 41.

Figure 13. Visualizing the x and y components of the forces that ropes exert on a knot
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completed free-body diagram to answer questions about unknown forces. Students 

can check their work using Newton’s second law in component form (Figure 14). 

A formative assessment might give the application of Newton’s second law in 

component form and then ask a student to construct a free-body diagram that is 

consistent with equations. The assessment might also ask the student to write a 

problem that could be solved with the equations. This assessment is sometimes 

called Equation Jeopardy.20 An example of component equations is provided below:21 

x: + (100 N) cos 37o + 0 – 0.40 N + 0 = (10 kg) a
x

y: + (100 N) sin 37o + F
ground on object 

+ 0 – (10 kg)(10 N/kg) = (10 kg) 0

Jeopardy problems are very valuable because they have multiple correct solutions 

and thus help students develop epistemic cognition.

Goal-Free Problems

After students have learned to draw and use these different representations, you can 

now give them any end-of-chapter problem of medium difficulty and ask them to 

represent it in different ways without solving the problem. The situation is described 

first in words. The students then make a sketch that has coordinate axes, and 

they include the known information and identify the desired unknown. They make 

a motion diagram or velocity subtraction diagram to determine the acceleration 

20. A. Van Heuvelen and D. Maloney, “Playing Physics Jeopardy,” American Journal of Physics 67 (1999): 252–56.
21. Van Heuvelen and Etkina, Active Learning Guide, 3-1.
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direction, they construct a free-body diagram, and they apply Newton’s second 

law in component form and apply kinematics equations if needed. These different 

representations should be checked for consistency. Students who have spent time 

doing such activities have significantly improved scores on problem-solving tests 

compared to students who do not use multiple representations.22

Does This Strategy Work as Measured by Summative  
Assessment Tools?

Many educators suggest that multiple representations play a positive role in student 

learning (see references on problem solving in Appendix A). In the early 1990s 

Van Heuvelen developed an Overview, Case Study Physics (OCS) curriculum that 

emphasized multiple representations.23 The curriculum was adapted from a very 

successful high school Overview, Case Study physics instruction system developed 

by Art Farmer at Gunn High School in Palo Alto, California.24 

The college OCS version has been used at several colleges and universities, with 

results reported on various standardized conceptual and problem-solving tests. Van 

Heuvelen compared students’ learning gains on a diagnostic test from the reformed 

course (in which the instructor created a representation-rich environment) and a 

traditionally taught course and found that student gains in the reformed course were 

15 percent higher than those in the traditional class. He also discovered that students 

were able to retain information longer. Gautreau used the method at New Jersey 

Institute of Technology.25 His students’ scores were dramatically higher than students’ 

scores in three traditionally taught classes. The methodology was persuasive: The 

three professors teaching the traditional classes wrote the tests, the tests were not 

seen by Gautreau before they were administered, and department graduate students 

did the grading on all of the tests.

De Leone and Gire studied how many representations students in a reformed 

course used when solving open-ended problems on quizzes and tests.26 They found 

that students who correctly solved the majority of the problems tended to use multiple 

representations frequently.

22.  R. Gautreau and L. Novemsky, “Concepts First—A Small Group Approach to Physics Learning,” American Journal of 
Physics 65 (1997): 418–28.

23.  Van Heuvelen, “Overview, Case Study Physics,” 898–907; A. Van Heuvelen, “Millikan Lecture 1999: The Workplace, 
Student Minds, and Physics Learning Systems,” American Journal of Physics 69 (2001): 1139–46.

24. Arthur V. Farmer, “A New Approach to Physics Teaching,” The Physics Teacher 23 (1985): 338–43.
25. Gautreau and Novemsky, “Concepts First,” 418–28.
26.  C. DeLeone and E. Gire, “Is Instructional Emphasis on the Use of Non-Mathematical Representations Worth the Effort?” 

(paper presented at the 2005 Physics Education Research Conference, Salt Lake City, UT), in AIP Conference Proceedings, 
Volume 818, eds. P. Heron, J. Marx, and L. McCullough (Melville, NY: American Institute of Physics, 2005), 45–48.
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From 2003 to 2006 the authors of this article conducted a project in two 

large-enrollment (about 500 students in one and 200 in the other) algebra-based 

physics courses for science majors at Rutgers University in which they used all of 

the strategies described above, integrated in the Investigative Science Learning 

Environment (ISLE) format.27 The goal of the study was to find whether students in a 

course that incorporated all the multiple-representation strategies described above 

(and many more) actually used these representations, specifically free-body diagrams 

to solve problems in mechanics and electrostatics. 

The course was comparable to high school honors physics, and sequences of 

students’ activities used in the course were taken from The Physics Active Learning 

Guide (ALG).28 A multiple-representation approach was emphasized in a coordinated 

way in lectures, recitations, and laboratories.

As the course had such high enrollment, the exams were mostly multiple choice 

and students received no credit for the work on multiple-choice questions. Even 

though students received no credit for their work on multiple-choice exam problems 

(which composed about 80 percent of the exams), students had drawn free-body 

diagrams in 66 percent of the solutions for seven multiple-choice exam problems 

that involved forces, even when solving problems in mechanics and electrostatics. 

We also found that student grades correlated highly with their choice of whether to 

draw a free-body diagram to solve a problem. “A” students used free-body diagrams 

84 percent of the time, “B+” and “B” students used them 71 percent of the time, and 

those students who had a C+ or lower only used them 45 percent of the time. 

27.  E. Etkina and A. Van Heuvelen, “Investigative Science Learning Environment: Using the Processes of Science and 
Cognitive Strategies to Learn Physics,” in Proceedings of the 2001 Physics Education Research Conference, eds.  
S. Franklin, J. Marx, and K. Cummings (Rochester, NY: American Institute of Physics, 2001), 17–21.

28. Van Heuvelen and Etkina, Active Learning Guide.
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We also developed a rubric to evaluate the quality of student free-body 

diagrams (see Table 1) and used this rubric to find whether those students who drew 

better diagrams on their exam sheets were more successful in solving the problem. 

We found that this was indeed the case. We analyzed 1,465 student solutions for 

12 different problems. We found that 85 percent of the students whose free-body 

diagram score was a 3 solved the problem correctly, 71 percent of those whose 

diagrams received a score of 2 solved the problem correctly, and only 38 percent of 

those whose diagrams received a score of 1 (basically incorrect diagrams) solved 

the problem correctly. Forty-nine percent of students who did not draw a diagram 

solved the problem correctly. These latter students could have constructed diagrams 

in their head, as was stated by a student during the qualitative study, or possibly on 

scrap paper that was not turned in to the proctors, as was stated by some students 

in follow-up interview studies. The difference among these groups is statistically 

significant, and the details of the analysis are described in the literature.29 Clearly, 

correctly drawn free-body diagrams helped students solve the problems. Remember, 

the students drew the diagrams despite the fact that they received no credit for this 

work (they were answering multiple-choice problems).

In addition, we videotaped several students from these courses while working 

on a static electricity problem and for which a free-body diagram would be helpful 

(see Figure 15). However, the text of the problem did not ask students to draw a 

diagram. Six students (two high achieving, two medium achieving, and two low 

achieving) solved the problem using “a think-aloud protocol” during which they had 

to speak while solving the problem so an observer could record their thinking.30 

We found that the best students not only drew free-body diagrams to write a 

mathematical description of the problem, but they also repeatedly returned to the 

29.  D. Rosengrant, “Multiple Representations and Free Body Diagrams: Do Students Benefit from Using Them?” (Unpublished 
Ph.D. dissertation, Rutgers, The State University of New Jersey, 2007), 35.

30.  K. Ericsson and H. Simon, Protocol Analysis: Verbal Reports as Data (Cambridge, MA: MIT Press, 1984); K. Ericsson 
and H. Simon, “How to Study Thinking in Everyday Life: Contrasting Think-Aloud Protocols with Descriptions and 
Explanations of Thinking,” Mind, Culture, and Activity 5:3 (1998): 178–86.
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diagram during the solution process. Medium-achieving students also drew free-

body diagrams and used them to write mathematical equations but did not use 

the diagram for evaluation purposes. Low-achieving students either did not draw a 

diagram or drew it in addition to the equations, but not to help construct them. The 

details of the study can be found in the literature.31

Summary and Implications for Instruction

Multiple representations are the tools that scientists use to construct new knowledge, 

solve problems, evaluate their work, and communicate. If we want our students to 

reason like scientists, we need to engage them in similar activities and convince 

them of the usefulness of representations. Summative assessment is one way to 

communicate this idea. If students are asked on an exam to represent a situation in 

multiple ways without solving for a particular quantity, they will understand that the 

ability to re-express concepts has value. Another way to achieve the same goal is to 

provide students with problems that are difficult to solve without representing the 

situation in multiple ways. 

In this paper we presented an approach for helping students represent 

kinematics and dynamics processes in multiple ways. We shared data that indicate 

that students using these methods are more successful. Furthermore, on certain 

examination questions those students who are most successful in the classroom 

evaluate their work by using the different representations. 

31. Rosengrant, Etkina, and Van Heuvelen, “Case Study: Students’ Use of Multiple Representations in Problem Solving,” 49–52.
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Introduction

Energy is a very abstract concept. The full importance of energy was not recognized 

until Joule’s experiments of the mid-nineteenth century, nearly 200 years after 

Newton’s flash of genius. And unlike the well-defined idea of momentum, p = mv, 

we keep “inventing” new forms of energy—kinetic energy, potential energy, thermal 

energy, nuclear energy, and so on. Energy, at least to beginning students, is an 

amorphous, ill-defined concept. It’s not at all obvious how 21
2 mv  has any connection 

to thermal energy or nuclear energy. And students are certainly not helped by our 

everyday use of the terms “work” and “energy.” Why, after all, should we be worried 

about “conserving energy” if energy is always conserved?

One difficulty is that there’s no thing you can put your finger on and say, “Here, 

this is energy.” It’s just some number—calculated by adding a little of this and a 

little of that—that for some hard-to-fathom reason never changes. In addition, energy 

as it’s used in thermodynamics seems to have little connection to energy as it had 

been defined in mechanics. We tend to say that the first law of thermodynamics is a 

“general statement of energy conservation,” but students rarely see it that way.

To compound the difficulties, the presentation of energy to students is quite 

spread out. In a class situation, thermodynamics usually is presented weeks after 

energy had been introduced in the context of mechanics, and students will already 

have forgotten some of what they learned earlier. 
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Given a mechanics problem with no problem-solving hints, most students will 

choose a Newton’s law approach even where an experienced physicist or physics 

teacher would find an energy solution to be much simpler. When I’ve asked students 

about this after exams, noting how much extra effort they spent solving (or, often, 

failing to solve) a problem that would have been “easy” with an energy approach, their 

response has been that forces and motion laws are tangible and concrete, whereas 

energy seems mysterious, and they have no confidence in their ability to use energy 

laws correctly. 

There are similar difficulties with heat and heat engines in thermodynamics. 

Students may become reasonably adept at calculating the work done in a cycle or the 

efficiency of an engine—plug-and-chug tasks—but few can explain in words what a 

heat engine is doing as it transforms heat energy into mechanical energy. 

Goals

There is a large-scale coherence to the “energy story” that is missing from most 

introductory presentations but that is essential for a firm grasp of the concept. The 

overall goal is to help students see the big picture of what energy is all about. In 

particular:

1. To understand how the concept of energy is used in mechanics.

2. To understand how the concept of energy is used in thermodynamics.

3.  To recognize that the first law of thermodynamics—and thus the use of energy 

in thermodynamics—is closely related to and a continuation of the energy 

ideas introduced in mechanics.

Energy is a big topic, and this essay cannot possibly address all the many 

facets of energy. The focus of this essay is on using multiple representations to better 

understand energy. Many other vital issues—types of energy, energy transformations, 

work and heat, heat engines, etc.—must also be part of the lesson plan but will be 

mentioned here only peripherally, if at all.

Because the teaching of energy is spread out in time, the information presented 

in this essay does not form the basis for a lesson plan that can be presented on 

sequential days or even sequential weeks. The challenge to the teacher is twofold. 

First, to make sure you understand the ideas well enough to lay out a coherent 

teaching plan extending over many weeks. Second, upon reaching thermodynamics, 

to keep linking back to mechanics, providing the storyline and the big picture that 

are woefully absent in most textbooks. The numerical examples in this essay are 

intended to give you ideas for appropriate class examples or homework problems.
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Multiple Representations

We represent knowledge in many ways and forms. The words with which a physics 

problem are written demonstrate a verbal representation of knowledge, as do the 

words with which a student expresses his or her understanding. The equations with 

which the problem is solved are mathematical representations of the same knowledge. 

Unfortunately, most students try to leap directly from a problem statement to a 

mathematical solution. In other words, they follow a plug-and-chug problem-solving 

strategy in which they try to “pattern match” the numbers in the problem to an 

equation in the book, then cross their fingers and hope it’s the right equation.

Few physics problems—and certainly not the types of problems we expect 

students to solve to demonstrate mastery—can be solved with such a simple 

approach. Students must learn to reason with physics concepts, and that’s where 

other representations of knowledge are important. An obvious one, the pictorial 

representation, is a picture of the situation. But it is not just any picture. A useful 

picture, one that’s going to help solve the problem, follows procedures that teachers 

must teach and students must learn. Simply telling students to draw a picture is not 

sufficient.

Other representations of knowledge include graphical representations, bar charts, 

interaction diagrams, and energy transfer diagrams. Examples will be given below. 

The point is that much of learning physics consists of learning how to move back and 

forth between different representations of knowledge. Think of these representations 

as different perspectives on the same situation. The more perspectives you can bring 

to bear on a problem or a situation, the more likely you are to understand what’s 

going on and then to solve the problem. Experts move back and forth between 

representations without conscious effort, but it’s a skill students must learn and thus a 

skill teachers must be comfortable teaching.

Lesson 1: Conservation of Mechanical Energy

Objective: Mechanical energy is conserved in an isolated system.

Representations: Before-and-after pictorial representations, bar charts, interaction 

diagrams, energy graphs.

The typical textbook starts the first chapter on energy with “Define work as...” This 

is an abstract, top-down approach with no rationale or motivation. It has long been 

recognized that students learn better with a concrete, bottom-up approach based on 

their experience and on simple demonstrations and experiments. Only after students 
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grasp some initial ideas about energy does it make sense to introduce “work” as a 

way in which a system exchanges energy with its environment.

In my textbooks, I start the energy chapter by using Newton’s laws and simple 

kinematics to “discover” that the quantity 21
2 mv mgy+  doesn’t change for an object 

on a frictionless incline. Similarly, the quantity 2 21 1
2 2mv kx+  doesn’t change for an 

object on a spring. Notice two important things:

1.  Each quantity is a sum of two terms. One term depends entirely on speed, 

regardless of where the object is. The other depends entirely on position, 

regardless of speed. Let’s call these “kinetic energy” and “potential energy,” 

following the dictum “idea first, name second.” That is, we’ve quickly found 

evidence that the quantities 21
2 mv  and mgy  may be useful, so let’s give them 

names to make it easier to talk about them. (Contrast this with the abstract 

approach of starting with definitions that have no rationale.) We can then 

go on to say that their sum—the quantity that doesn’t change—is called 

“mechanical energy.”

2.  Because the mechanical energy is conserved—at least in the situations 

looked at thus far—it has the same value before an interaction (a gravitational 

interaction or an elastic interaction) as after the interaction. This is the basis 

for the first important visual representation.

Note: Even if you are using a textbook that follows the traditional “Define work as...” 

approach, I urge you to start with some simple ideas about kinetic and potential 

energy in order to provide a context for this definition of work.

We are always telling students to “draw a picture,” but it is not obvious to 

students what they should draw or why this is useful. I remind students that they 

can hold only five or six pieces of information in their short-term memory, so by the 

time they finish reading a typical problem, they are already forgetting how it started! 

Thus, one purpose of a picture is to be a “brain extender” that helps to keep track of 

information. A second purpose is to help structure a solution to the problem. However, 

what students need to draw depends on the nature of the problem. A drawing for an 

energy conservation problem differs from the drawing for a Newton’s law problem. 

The important idea behind conservation law problems is that the details of 

the interaction do not matter. (This is very different from Newton’s laws, which are 

focused on the interaction.) Consider the following typical problem:

 Christine runs forward with her sled at 2.0 m/s. She hops onto the sled at 

the top of a 5.0 m high, very slippery, snow-covered slope. What is her speed 

at the bottom?
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We can use energy to relate the situation before she slides to the situation at the 

bottom of the hill. The details of the sliding—assumed to be frictionless—are 

irrelevant. Thus the Figure 1 before-and-after pictorial representation (1) establishes 

a coordinate system; (2) captures all the essential information; and (3) identifies what 

we’re trying to find, in this case the final speed, f .v  Now we can read the pertinent 

information right off the picture and use it in the mathematical representation of the 

problem—namely, the energy conservation equation:
2 21 1
i i f f2 2mv mgy mv mgy+ = +

FIGuRE 1: A bEFORE-AND-AFTER PIcTORIAL REPRESENTATION

This is a pretty simple problem, but it is important to get students in the habit of 

drawing pictures like this before they get to more complex problems. Then they’ll have 

a useful problem-solving tool. If you delay introducing tools until the problems become 

difficult, students will already have developed poor problem-solving techniques 

and are unlikely to change. The key idea here is that we moved information from 

a verbal representation (the problem statement) to a pictorial representation and 

then to a mathematical representation (the pertinent equation). The before-and-after 

representation can be applied to any problem with a conserved quantity, including 

momentum problems and problems of charged particles in electric fields.

Recognizing that the total energy doesn’t change leads to another representation 

of energy knowledge: bar charts. These are accounting devices much like those used 

to indicate income and expenditures. Figure 2 is a bar chart representation for the 

above problem of Christine on her sled. Here we see that potential energy decreases 

and kinetic energy increases—a transformation of energy from one form to another. 
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FIGuRE 2: A bAR cHART REPRESENTATION

Although before-and-after pictorial representations can easily be drawn freehand, 

it’s best to provide blank bar charts with grids if you want students to draw them 

accurately. The purpose of bar charts is to show (1) how energy is being transformed; 

and (2) that the total energy is conserved. Numerical values are not important—bar 

heights are chosen to be plausible, but students can differ in their choices—and in 

fact it’s best to have students do these when analyzing a problem statement before 

getting to the mathematics. Notice that the chart allows for negative energies, 

although they don’t occur in this example.

Note: Bar charts and before-and-after drawings work hand in hand to provide 

the student with a clear conceptual picture of what’s going on before leaping to 

a calculation. If a student can articulate which kinds of energies exist before an 

interaction and how these energies change because of the interaction (increasing or 

decreasing), they are much less likely to make errors in the numerical solution. 

These initial simple examples immediately raise questions. Is mechanical energy 

always conserved? If not, when is it and when is it not? It’s important to let students 

know that the energy story has many pieces and that they can’t learn everything at 

once, so you’re starting with the simplest situation and will gradually add new pieces 

of information. This simplest situation, where mechanical energy is conserved, is 

called an “isolated system,” and it consists of two or more objects interacting with 

each other (these form the system) but not interacting with the rest of the universe 

(often called “the environment”).

This idea can be represented pictorially with the interaction diagram of Figure 3. 

We see that energy within the system can be transformed from one type to another—

kinetic to potential or vice versa—but (1) there are no external interactions (no 

energy is exchanged with the environment); and thus (2) the total energy in the box 
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doesn’t change. The drawing for an isolated system is so simple that it hardly seems 

worthwhile, but we’ll soon expand upon this visual representation of interactions to 

show the “basic energy model” of mechanics and the “thermodynamic energy model.”

FIGuRE 3: AN INTERAcTION DIAGRAM FOR AN ISOLATED SySTEM

Note: For gravity problems such as the one involving Christine on her sled, the 

objects making up the system are Christine (with her sled) plus the earth as a whole. 

Christine alone is not an isolated system because gravity would then be an external 

force. Recognizing that gravitational potential energy is an energy of the earth-plus-

object system is a subtle but important point. Asking students “What’s the system?” 

and “Is this an isolated system?” can help make the point.

Because potential energy is a function of position, another important 

representation of energy in an isolated system is the energy graph. An energy graph 

shows two things: the potential energy curve U(x) or U(y), which varies with position x 

or y, and the total energy line E = K + U, which is horizontal to represent constant total 

energy. Figure 4 shows and interprets the energy graph for a particle moving under 

the influence of gravity, where U(y) = mgy is graphed as a straight line with positive 

slope. This could be another representation of Christine on her sled, or it could equally 

well be a particle in free fall. Because K cannot be negative, the particle cannot be at 

a position where the PE curve is above the TE line. Their crossing point represents a 

turning point where instantaneously K (and thus v) is zero.
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FIGuRE 4: AN ENERGy GRAPH FOR A PARTIcLE uNDER THE INFLuENcE OF 
GRAVITy

If a particle of mass m is shot straight up from y = 0, it slows down (decreasing 

K) as y increases because kinetic energy is being transformed into gravitational 

potential energy. It reaches a maximum height at the turning point where the PE 

curve crosses the TE line (K = 0), then reverses direction. We can see that it speeds 

up as y decreases because K is increasing while U decreases.

Note: The TE line is under your control. You can move the TE line up by 

shooting the particle up with a larger initial speed. Conversely, a smaller initial speed 

is represented by a lower TE line and thus a turning point at a smaller value of y.

Now imagine drawing the potential energy curve of Figure 5a on the board, 

telling students that a particle is released from rest at 1,x  and asking them to 

describe its subsequent motion. That is, and where is it speeding up, where is it 

slowing down, where does it have maximum speed, and where (if anywhere) does 

it reverse direction? Students (and many teachers!) find this extremely challenging. 

The difficulty is partly a matter of interpreting information presented graphically and 

partly a matter of not understanding the essential idea of energy conservation—that 

potential and kinetic energy can be transformed back and forth as long as the total 

energy doesn’t change. The good news is that spending a class period practicing a 

few examples like this produces remarkable gains in conceptual understanding of 

energy.
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FIGuRE 5: INTERPRETING ENERGy GRAPHS

In this case, the particle is released from rest (K = 0) at 1,x  so the energy at this 

point is purely potential and thus the TE line crosses the PE curve at this point. This 

is shown in Figure 5b. Upon release, the particle can’t move to the left, because that 

would make K negative, so it begins moving to the right, speeding up as U decreases 

and K increases. After passing 2,x  U begins increasing and so the particle slows 

down as kinetic energy is transformed back to potential energy. It reaches a minimum 

of speed—but not zero!—at 3,x  then speeds up until reaching maximum speed at 

  
x4  (K is maximum where U is minimum), then slows until reaching a turning point—

instantaneously at rest—at 5.x  The particle then reverses direction and goes through 

the same process of speeding up and slowing down until it returns to 1.x  But it won’t 

stop there. The particle will continue to oscillate back and forth between 1x  and 5x  

like a marble in an oddly shaped bowl.

A final use of energy graphs is for understanding stable and unstable equilibria, 

as shown in Figure 5c. A particle is at rest (K = 0) if the total energy line touches 

the PE curve. A minimum in the potential energy (points 2x  and 4x ) is a stable 

equilibrium point because a small disturbance—a very small increase in the 

total energy—would merely cause a very small oscillation around the equilibrium 

point. Thus, a particle with total energy 2TE  has a stable equilibrium point at 2.x  

A potential energy maximum is also a point of equilibrium, but it’s like a pencil 

balanced on its point: It is static if the balance is 100 percent perfect, but even an 

infinitesimal disturbance will cause the particle to head off to distant values of x. 3x is 

a point of unstable equilibrium for a particle with total energy 1TE .

Energy graphs reappear in AP Physics C: Electricity and Magnetism (E&M), 

where they often become graphs of electric potential rather than potential energy, and 

in quantum physics, where we talk about “a particle in a potential well.” I’ve found 

that most students in a modern physics class have no idea what the typical textbook 
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pictures of a potential well represent because they were never asked to interpret 

graphs like these in mechanics. Helping students learn to reason with energy graphs 

will help their understanding of energy transformations in mechanics and help them 

be better prepared for E&M and quantum physics.

Assessment Question 1.1: A child slides down the three frictionless slides 

A, B, and C. Each has the same height. Rank in order, from largest to smallest, 

the child’s speeds A ,v  B,v  and Cv  at the bottom. Explain your reasoning.

Answer: A B C.v v v= = Mechanical energy is conserved. The increase in 

kinetic energy depends only on the decease in height, not the shape of the 

path along which the decrease occurs.

Assessment Question 1.2: A particle with the potential energy shown in 

the graph is moving to the right. It has 1.0 J of kinetic energy at x = 1 m. 

Where is the particle’s turning point? Explain.

Answer: x = 6 m. The potential energy at x = 1 m is U = 3.0 J. Thus the total 

energy is E = K + U = 4.0 J. Draw a horizontal TE line at 4.0 J. The TE line 

crosses the PE curve at x = 6 m.
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Lesson 2: Work and Thermal Energy

Objective: Work is the mechanical transfer of energy between a system and the 

environment. The work done by dissipative forces increases the system’s thermal 

energy.

Representations: Before-and-after pictorial representations, bar charts, interaction 

diagrams, atomic representations.

The definition of work—whether it’s a simple “force times distance” or the 

integral of a variable force—does little to convey the significance of work. What’s 

the point? Lesson 1 focused on isolated systems, but most systems are not isolated. 

Work is the mechanical transfer of energy to or from a system as it interacts with its 

environment—that is, energy transferred by pushes and pulls. Thus, “work” needs 

to be seen as one of two important ways (the second, introduced later, is “heat”) by 

which a system can change its energy. That’s the point!

The basic definition of work is for a force acting on a single particle, a restriction 

that’s easily forgotten. When a force acts on a particle, the particle’s only option is 

to change velocity and (except for centripetal forces) to change kinetic energy. This 

is what the work–energy theorem ∆ K W� =  tells us. In words, “work” is the energy 

transferred to a one-particle system by forces, and this energy is used entirely to 

change the particle’s kinetic energy. 

Details of how to calculate work in different circumstances are very important, 

and students are well known to have difficulties when work is zero or negative. 

Most of those issues are beyond the scope of this essay, but two points are worth 

emphasizing to students. First, no work is done unless a particle undergoes a 

displacement. No amount of pushing or pulling does work on a particle that remains 

at rest. Second, work is positive (energy moves from the environment to the particle as 

the particle speeds up) when the force (or a component of the force) is in the direction 

of the particle’s displacement; work is negative (energy moves from the particle to 

the environment as the particle slows down) when the force is opposite the particle’s 

displacement. The key idea from the big-picture perspective is that work—however 

it’s calculated—is how we use mechanical means, pushes and pulls, to change a 

particle’s energy. 

All textbooks describe the work done by conservative and nonconservative forces. 

(Again, details must be found elsewhere.) This leads to the common assertion that the 

law of conservation of energy is

  
ΔK + ΔU + ΔEth = 0
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where thE  is the system’s thermal energy. This statement, as usually presented, is not 

true. It has not properly distinguished transfer of energy from transformation of energy.

Simple examples are easily found. If you push a book across a level table at 

constant speed,   ΔK = 0,   ΔU = 0,  and 
  
ΔEth > 0.  Their sum is not zero. If you pick up 

the book and place it on a high shelf,   ΔK = 0,   ΔU > 0,  and 
  
ΔEth = 0.  Their sum is not 

zero. 

Understanding what’s going on, and why the standard statement of energy 

conservation isn’t true, provides an important link between energy in mechanics and 

energy in thermodynamics. Consider the situation in Figure 6. Here we’ve identified 

a system of two or more interacting particles. The internal forces within the system 

may be either conservative forces (gravity, springs, electric forces) or dissipative 

nonconservative forces (friction). Equally important, the environment may exert 

external forces on the particles in the system.

FIGuRE 6: THE MANy FAcES OF wORK

As noted above, work is the energy transferred to single particles by forces. The 

work–energy theorem summed over all the particles in the system is

  
ΔK =Wtotal =Wc +Wnc +Wext

where K is the total kinetic energy of all the particles and c ,W  nc ,W  and extW  are the 

work done by internal conservative forces, nonconservative forces, and external forces, 

respectively. So far there’s no potential energy and no thermal energy, just particles 

whose kinetic energies are changing as forces do work on them.

Potential energy appears because the work done by conservative forces can be 

associated with a potential energy via 
  
ΔU (i→ f ) = −W

c
(i→ f ),  where the notation 

means the work done or the change in potential energy as the system particles 

move from initial positions i to final positions f. Refer to any introductory textbook 

as to why the minus sign is included in the definition. In essence, potential energy 
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is “precomputed work,” which we can do since we don’t need to know the particles’ 

trajectories to calculate the work done by a conservative force. If you use a potential 

energy associated with a conservative force, make sure that you don’t also compute 

the work done by that force because you would then be double-counting! 

Similarly, the work done by friction or other dissipative, nonconservative 

forces within the system is associated with an increase in the system’s thermal 

energy:   
ΔEth = −Wnc.When a box slides to a halt after being pushed across the floor, 

students will tell you that the initial kinetic energy “went to heat.” That’s a correct 

understanding of the basic idea, but an incorrect use of terms. Heat—to be defined 

upon reaching thermodynamics—is a transfer of energy, not “hotness.” Friction makes 

things hotter, but we want to associate the ideas of “hotter” and “colder” (higher 

and lower temperatures) with an increase or decrease of “thermal energy.” Note that 

the work done by friction is always negative because the force direction is opposite 

the displacement, so the minus sign in the definition makes   
ΔEth  positive: Friction 

always causes an increase in thermal energy.

Explaining thermal energy is often the first opportunity to use an atomic 

representation like the one in Figure 7. Atomic representations will be important 

later in thermal physics, E&M, and, of course, modern physics when we want to 

explain that many macroscopic properties of objects can be understood in terms of 

the microscopic behavior of vast numbers of atoms. In this case, we want students to 

understand that thermal energy is kinetic and potential energy, but now the kinetic 

energy of moving atoms and the potential energy of stretched/compressed spring-like 

molecular bonds. This is a very real energy, but distinct from the macroscopic center-

of-mass energy of the object as a whole. Increasing an object’s temperature makes the 

atoms move faster and the molecular bonds vibrate with larger amplitudes, so “hotter” 

really means “more thermal energy.” 

FIGuRE 7: THE ATOMIc REPRESENTATION OF THERMAL ENERGy
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In using thermal energy, both objects experiencing friction must be part of the system. 

For a box sliding across a rough surface, both the box and the surface are part of the 

system. This way, the friction forces are internal forces within the system, such as 

those shown in Figure 6. Because both the box and the surface get hot,   
ΔEth is the 

combined thermal energy increase of both. We can’t determine the separate thermal 

energy increases—at least not without a lot more information (masses, specific heats, 

etc.) and a much more detailed analysis.

Using   
Wc = −ΔU  and   

Wnc = −ΔEth  in the work–energy theorem, we have 

  
ΔK + ΔU + ΔEth =Wext .

If all the forces are internal forces—an isolated system—then the simple energy 

conservation equation   
ΔK + ΔU + ΔEth = 0  is valid. In an isolated system we have 

only transformations of energy: potential to kinetic (a falling rock), kinetic to thermal (a 

sliding box), etc.

In fact, we can say that the mechanical energy mechE K U= +  is conserved for a 

system that is both isolated ( ext 0W = ) and nondissipative ( nc 0W = ), whereas it’s the 

total energy sys thE K U E= + +  that is conserved for a system that is merely isolated 

but might have friction. This is an important conclusion. An excellent class exercise is 

to toss out a variety of situations—a boy going down a frictionless slide, a boy going 

down a rough slide, a boy being pulled down a rough slide by a rope—and asking 

what, if anything, is conserved. Correctly identifying conserved quantities is essential 

to formulating a correct problem-solving approach. 

If external forces act on the system, we have the situation shown in the revised 

interaction diagram of Figure 8. Compare this to the simpler interaction diagram of an 

isolated system in Figure 3. You can see that our ideas about energy—what it is and 

what it does—are expanding. 
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FIGuRE 8: THE bASIc ENERGy MODEL, A REVISED INTERAcTION DIAGRAM

I like to call Figure 8 the “basic energy model.” It’s not everything about energy, 

because we haven’t yet included heat, but this representation of interactions contains 

everything we need to know for understanding and using energy in mechanics. 

Further, this model can easily be extended to include heat, as we will do in Lesson 

3. In essence, this diagram is a pictorial representation of the full energy story in 

mechanics. In particular:

•	 Energy	is	transferred between the system and the environment as the work 

done by external forces. Negative work—a real possibility—means that the 

system’s energy decreases. 

•	 Energy	is	transformed within the system. Physically, this is due to the work 

of internal interaction forces, conservative and nonconservative, but it’s 

more useful to think of these as changes in potential energy and changes in 

thermal energy.

•	 	The	full	conservation	of	energy	statement	in	mechanics	is 

 
  
ΔEsys = ΔK + ΔU + ΔEth =Wext . 

A student who understands that this is the mathematical representation of 

Figure 8 is well on the way to successfully understanding and using energy.

Note: It is important to include thermal energy when discussing mechanical energy. 

After all, friction is a real part of everyday experience, and understanding what friction 

does to energy is an important idea. Unfortunately, most textbooks do not discuss 

thermal energy at this point in the course, or at best only mention it in passing. This 

leaves the student able to apply energy ideas only in ideal situations of no friction. 

Further, exclusion of thermal energy misses an important opportunity for developing 

the “big picture” of what energy is all about.

.
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To see all the pieces in play, consider the following problem that is quite a bit 

more complex than that of Christine and her sled in Lesson 1:

A 5.0 kg box is attached to one end of a spring that has a spring constant of 

80 N/m. The other end of the spring is attached to a wall. Initially the box is 

at rest at the spring’s equilibrium position. A rope with a constant tension 

of 100 N pulls the box away from the wall. The coefficient of kinetic friction 

between the box and the floor is 0.30. What is the speed of the box after it 

has moved 50 cm?

Figure 9 shows both a before-and-after pictorial representation and an extended 

energy bar chart. This is not a problem likely to be solved by plug-and-chug into an 

equation, but it is not a terribly hard problem if you use these visual representations 

to understand what it going on. We’ve chosen the system to be box + spring + floor; 

the spring has to be inside the system to use the elastic potential energy of the spring, 

and the floor has to be inside the system because friction is going to increase the 

thermal energy of both the box and the floor. The rope’s tension is then an external 

force doing work on the system, transferring energy into the system. That outside 

energy increases the box’s kinetic energy, increases the spring’s potential energy, and 

increases the thermal energy of the box and floor.

FIGuRE 9: A bEFORE-AND-AFTER PIcTORIAL REPRESENTATION AND AN ENERGy 
bAR cHART

The full energy conservation statement is 
  
ΔEsys = ΔK + ΔU + ΔEth =Wext .  

The rope does external work   
Wext = TΔx,  the spring’s potential energy 

increases by
  
ΔU = 1

2
k(Δx)2,  and the thermal energy increases by 

  
ΔEth = −Wfric = −(− fkΔx) = μkmgΔx. These can be used to compute the box’s increase 

in kinetic energy and thus to find f 3.6 m/s.v =  A student who successfully solves 

a problem like this has come a long way toward a full understanding of energy in 

mechanical systems.
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Assessment Question 2.1: A child slides down a playground slide at 

constant speed. The energy transformation is

a. U → K b. K → U c. U → Eth d. K → Eth

e. There is no transformation because energy is conserved.

Answer: c. U → Eth. Constant speed means that kinetic energy isn’t changing 

(at least not after a brief increase at the start). Potential energy is decreasing 

while the work done by friction is increasing the thermal energy of the slide 

and the child’s pants.

Assessment Question 2.2: A rope lifts a box straight up at constant speed. 

Show the energy transfers and transformations on an energy bar chart.

The tension in the rope is an external force doing work on the box, 

increasing its potential energy. The box has kinetic energy—it’s 

moving—but the kinetic energy is not changing. 

Lesson 3: Work, Heat, and the First Law of 
Thermodynamics

Objective: The first law of thermodynamics is a continuation of the study of energy in 

mechanics. It describes how a system interacts both mechanically and thermally with 

its environment.

Representations: Interaction diagrams, pV diagrams.

It is hoped that the study of energy in mechanics ended with the energy conservation 

statement 
  
ΔEsys = ΔK + ΔU + ΔEth =Wext .  Upon starting thermodynamics, it’s easy 

to point out that this equation can’t be the full story. Consider putting a pan of water 

on the stove. No external work is done and neither the kinetic nor potential energy of 

the water as a whole changes, yet the water gets hotter—its thermal energy increases. 

If you earlier introduced the basic energy model of Figure 8 and talked about the 

Answer:
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distinction between energy transformations (within the system) and energy transfers 

(to or from the environment), it’s clear that the water is getting hotter (  
ΔEth > 0 ) due to 

some kind of energy transfer from the environment. 

The energy conservation statement from mechanics is not wrong; it is merely 

incomplete. Work, a mechanical process using pushes and pulls, is not the only way 

energy can be transferred to or from the system. We can now define “heat” as a 

thermal process in which energy is transferred from a hotter object to a colder object 

due to a temperature difference. Mechanical and thermal processes are the two broad 

categories for how a system exchanges energy with its environment.

If heat is included as a second way to transfer energy, the energy conservation 

statement becomes

  
ΔEsys = ΔK + ΔU + ΔEth =Wext +Q .

This equation has a name. It is the first law of thermodynamics, but it is not yet 

expressed as it usually is within thermodynamics. Nonetheless, it’s important to start 

your discussion of thermodynamics this way because it shows that thermodynamics 

is simply a continuation of mechanics. We’ve introduced a new process for transferring 

energy, but the framework for thinking about energy—in which we invested a lot of 

time back in mechanics—is still valid. 

Surprisingly, few textbooks make this connection. Energy in thermodynamics is 

introduced as if it has little or no connection to energy in mechanics, so it comes as 

no surprise that almost no student sees the connection. 

To finally reach the usual statement of the first law, we can note that the systems 

of interest in mechanics are stationary containers of gas or liquid whose center-of-

mass mechanical energy does not change; that is,   ΔK + ΔU = 0. It is not that we 

couldn’t use the heat of burning fuel to launch the system as a whole into the air, but 

that’s not the focus of standard thermodynamics. If we restrict ourselves to stationary 

systems, then 
  
ΔEsys = ΔEth;  the only part of the system’s energy that can change is 

its thermal energy.

Further, the work done in thermodynamics is always the external work of piston 

rods or other forces that expand or compress gases. We don’t need to distinguish 

between the work of external forces and the work of internal forces, so the subscript 

“ext” on extW  is superfluous and can be dropped. With these two changes, the above 

energy conservation statement is reduced to

  
ΔEth =W +Q (first law of thermodynamics).
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This is, indeed, how the first law of thermodynamics is stated in my textbooks 

and a few other textbooks. Unfortunately, you’ll often see the first law written as 

  Q = ΔU +W .  Why is this unfortunate?

 Many textbooks use •	 U to represent thermal energy, even though just a few 

weeks earlier we used U to represent potential energy. And we’ll do so again 

when we get to electric potential energy. Using U for thermal energy is 

guaranteed to confuse students.

 With no explanation, many textbooks switch from having •	 W represent work 

done on the system, as it was in mechanics, to work done by the system. The 

magnitudes are the same, but this flips the sign of W and thus moves it to the 

other side of the equation. The pedagogical advantage of writing   
ΔEth =W +Q  

is that it places work and heat on an equal footing: They’re both processes by 

which energy is transferred between the system and the environment, and a 

positive quantity indicates that energy is flowing into the system. More and 

more scientific organizations are recommending that work in thermodynamics 

be defined as it is in mechanics—as work on the system—but textbooks have 

been slow to change.

 With a change in notation and a change in the definition of work, the link is •	

broken between energy in thermodynamics and energy in mechanics. A great 

opportunity to understand the big picture, what energy is all about, has been 

lost unless you intervene.

Figure 10, another interaction diagram, is what I call the “thermodynamic energy 

model.” Compare this to Figure 8 to see how the energy ideas from mechanics all 

carry over to thermodynamics.

FIGuRE 10: THE THERMODyNAMIc ENERGy MODEL

Note: We often refer to “work done on the system” when a gas is compressed and to 

“work done by the system” when a gas expands. Although this terminology is useful, 

it is also misleading. Research has found that many students think either the environ-
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ment does work or the system does work, but not both. Because of Newton’s third law, 

  
Wsystem = −Wenviron , so the environment does work and the system does work, but with 

opposite signs. Work “on the system” refers to a situation where environ 0W >  (and thus

system 0W < ), whereas work “by the system” means system 0W >  (and thus environ 0W < ). 

The work in the first law, as I’ve written it, is environ .W  When we informally say “work is 

done by the system,” we’re referring to a situation where the work done on the system—

the quantity you need to use in calculations—is negative. This is a subtle point, but a 

very important point to discuss with students.

As in mechanics, it’s very worthwhile to pose situations and ask whether W, Q, 

and   
ΔEth  are positive, negative, or zero. For example:

You drive a nail into wood with a hammer (•	   
W > 0,  Q = 0,  ΔEth > 0 ). The nail and 

hammer get hot, but this has nothing to do with heat.

You turn on a flame under a cylinder of gas, and the gas undergoes a slow, •	

isothermal expansion (  
W < 0,  Q > 0,  ΔEth = 0 ). Heat doesn’t always mean that 

something gets hot. 

High-pressure gas in a well-insulated cylinder pushes a piston out very rapidly •	

(an adiabatic process with   
W < 0,  Q = 0,  ΔEth < 0 ). Temperature can change 

without the presence of heat.

Remember that W is work on the system, so gas expansions have 0.W <

Students have far more trouble with questions like this than you might expect. 

They associate “heat” with “hotness” and thus make many errors when a temperature 

change is due to work rather than heat. But it’s much better to confront these issues 

early, when heat and the first law are introduced, than to have students making these 

errors when you later get to heat engines. Using the pictorial representation of Figure 

10 is very useful for helping students think about situations carefully rather than falling 

back on preconceived notations about heat and temperature. Is there a mechanical 

interaction? Is there a thermal interaction in which the system and environment 

exchange energy because of a temperature difference? What conclusions can we draw 

from the first law? These are the questions you want your students to focus on.

Ideal gases introduce a new representation, the pV diagram. Many textbooks 

don’t introduce pV diagrams until they get to heat engines, but that’s too late. 

Students have a lot of trouble understanding and using pV diagrams, and it’s better 

to introduce them when you first introduce the ideal gas law, and then use them as 

you do standard gas law problems about pressure changes and temperature changes. 

Then they’ll be a familiar and useful tool when you get to heat engines rather than one 

more new idea in a difficult chapter.
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Our focus here is on using pV diagrams to illustrate the work W in the first law. 

Because we’re using W as the work on the system, we have

  
W = − p dV

Vi

Vf

∫ = − (area under the pV  curve between Vi  and Vf ) .

Many textbooks, of course, define W as the work by the system and thus calculate W 

as the positive area under the curve. If your book does so, it’s probably best to follow 

the book rather than confuse students by using a different sign convention in class, 

even though doing so (as discussed above) breaks the connection with mechanics.

Example:

How much work is done on the gas in the ideal gas process shown in Figure 11?

FIGuRE 11: AN IDEAL GAS PROcESS

The work done on the gas is the negative of the area under the curve. Here we can 

find the area geometrically rather than explicitly carrying out the integration. The 

area from 500 cm3 to 1,000 cm3 can be divided into a rectangle of height 100 kPa and 

a triangle of height 200 kPa. The area under the curve from 1,000 cm3 to 1,500 cm3 is 

a simple rectangle. Volumes must be converted to SI units of m3, in which case the 

product of Pa and m3 is J. (It’s worth having your students verify this by multiplying 

through the units.) Calculation of the three areas gives   W = −325 J.  Work on the 

system is negative during an expansion because the force exerted by the piston rod 

is opposite the displacement of the piston. Alternatively, the work done by the gas is 

+325 J.

The work done on a gas as it goes from an initial state i to a final state f depends 

on the process by which the gas changes state. For example, Figure 12 shows two 

processes by which gas is compressed from initial state i to a final state f with smaller 

volume. Because W is the negative of the area under the curve and process A has a 
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larger area (a negative area because we’re integrating from right to left in this case), 

more work is done to compress the gas using process A than in using process B even 

though the final result is the same.

FIGuRE 12: wORK DEPENDS ON THE PROcESS

Suppose students are shown this diagram and asked, “Which process does more 

work on the gas? Or are they equal?” Research has found that a majority of students 

incorrectly answer “equal.” There seem to be three factors that enter into their failure 

to understand a crucial issue. First, they are confusing a “process quantity,” work, 

with “state variables.” It’s true that   Δp,    ΔT ,  and 
  
ΔEth depend only on the end points, 

not the process, because they depend only on the state of the gas. This reasoning 

does not apply to W and Q. Second, they are misapplying a statement—“the work 

done by a conservative force does not depend on the path”—that they learned in 

mechanics. That statement refers to a physical trajectory between two points in space, 

and it is the basis of defining potential energy. The external force in thermodynamics 

is not a conservative force, and the “path” goes through the pV diagram and shows 

a sequence of states, not a physical path through space. Third, most textbooks 

don’t give enough emphasis to pV diagrams, so students are not able to understand 

a situation by “reading” the pV diagram. The ability to interpret a pV diagram is 

strongly correlated with having a good grasp of the principles of thermodynamics, so 

it is important to help students learn to interpret pV diagrams.

As a follow-up question: Which process seen in Figure 13, A or B, requires the 

larger amount of heat? Or is the heat the same for both processes? Explain.
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FIGuRE 13: wHIcH PROcESS, IF EITHER, REquIRES MORE HEAT?

A majority of students think that A B.Q Q=  The temperature increase is the same 

for both processes, so shouldn’t they require the same heat? The issue here, as with 

Figure 12, is that heat (as well as work) depends on the process—on the path through 

the pV diagram. Because temperature and thermal energy are state variables, their 

change depends only upon the end points. That is,   
(ΔEth )A = (ΔEth )B.Applying the 

first law, it then must be true that 

A A B BQ W Q W+ = + .
The work done on the gas is negative for an expansion, so   

QA− |WA |= QB− |WB | .  

Based on the area under the curve, A B| | | | .W W>  Consequently, we conclude that 

A B.Q Q>

Assessment Question 3.1: A gas cylinder and piston are covered with 

heavy insulation. The piston is pushed into the cylinder, compressing the 

gas. In this process, the gas temperature

a. increases     b. decreases     c. doesn’t change 

d. There’s not enough information to tell.

Answer: a. increases. The first law is   
ΔEth =W +Q. No heat flows in or out 

due to the insulation. However, the piston does work on the gas, so 0.W >  

Thus   
ΔEth > 0,  and an increased thermal energy implies an increased 

temperature.
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Assessment Question 3.2: What type of gas process is represented by 

the following bar chart?

a. isochoric    b. isobaric     c. isothermal     d. adiabatic 

Is the process e. a compression or f. an expansion?

Answer: c and f; isothermal expansion. The thermal energy does not change, 

which means that the temperature does not change. W is negative, indicating 

an expansion in which the system does work on the environment: system 0W >

and thus environ 0.W W= <

Lesson 4: Using Energy in Thermodynamics

Objective: To understand energy flow in heat engines. 

Representations: Energy-flow diagrams, pV diagrams.

A heat engine is a very abstract idea. Real engines—such as steam engines or 

gasoline engines—are complicated gadgets that engineers work with. Our goal in 

physics is to understand the physical principles behind any engine that allow it to do 

useful work, regardless of the details of operation. Thus a heat engine is a model of 

real engines in much the same way that a particle is used to model the motion of cars 

or rockets. This is an important point to stress because many students have a hard 

time grasping the whole concept of a heat engine.

A heat engine is a device that uses a cyclical process to transform heat energy 

into work. Analyzing heat engines is, in many ways, the culmination of the “energy 

story”—what we’ve been working toward since first introducing kinetic and potential 

energy. At the same time, we find that energy concepts alone are insufficient for 

understanding heat engines. Energy conservation alone does not prevent heat 

energy flowing from cold to hot, nor does it prohibit a heat engine having 100 

percent efficiency. The second law of thermodynamics is the first new law of physics 
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encountered since leaving Newtonian mechanics, and a full understanding of heat 

engines requires both the first and second laws of thermodynamics. Nonetheless, this 

essay is about energy, so it will focus only on the energy aspects of heat engines. 

The energy flow diagram of Figure 14 is one more way to represent the first law of 

thermodynamics. The idea is to think of energy flowing like water though pipes; the 

heat engine itself neither makes nor destroys energy, so the total energy flowing out of 

the side and bottom “pipes” must exactly equal the energy entering through the top 

“pipe.” 

FIGuRE 14: THE ENERGy FLOw DIAGRAM OF A HEAT ENGINE

To see how Figure 14 is a pictorial representation of the first law, start by writing 

the first law for one complete cycle of the engine:

  
(ΔEth )cycle =Wcycle +Qcycle = −Wout + (QH −QC)

It will be convenient to work with positive quantities, so define 
  
Wout = −Wcycle  as the 

work done by the system in one cycle. Because a heat engine is a practical device for 

doing work, in this case it does make more sense to use the work done by the system, 

which is positive for a heat engine. Over the course of a cycle, sometimes heat flows 

into the engine from a reservoir at a higher temperature ( 0Q > ) and sometimes heat 

flows out into a reservoir at a colder temperature ( 0Q < ). The sum of all the positive 

heats (which may have more than one term due to different parts of the cycle) is called 

H.Q  The absolute value of the sum of all the negative terms is C;Q  in other words, CQ

is the magnitude of the heat flowing out of the engine, and thus is positive. With these 

definitions, we get the right-hand side of the above equation.

The pivotal step in the logic is that 
  
(ΔEth )cycle = 0. This is why we define a heat 

engine as using a cyclical process. Because thE  is a state variable, it returns to its 

initial value when the engine has completed a full cycle and returned to its initial 

state. The thermal energy can and does change during different portions of the 

cycle—a fact that many students overlook as they incorrectly try to apply   
ΔEth = 0  to 

each part of the cycle—but the changes cancel to give no net change over the entire 

cycle. 
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If we use 
  
(ΔEth )cycle = 0,

 
we can now write the first law for the heat engine as

H out CQ W Q= + .

This is exactly what Figure 14 is showing: Heat energy HQ  flows in from the hot 

reservoir. Some of that energy is transformed into useful work, and the remainder is 

rejected to the cold reservoir. What comes in has to go out, so H out C.Q W Q= +

Many students fail to understand this important reasoning, so they really don’t 

know what pictures like Figure 14 are showing. Consequently, they then tend to make 

lots of sign errors because they don’t know which terms are defined to be positive 

numbers. It’s definitely worth going through the reasoning carefully, then—before 

starting “real” heat engine problems—engaging students in simple exercises such 

as “How much work is done per cycle by a heat engine that takes in 200 J of heat per 

cycle and rejects 100 J of heat per cycle?” or “If a heat engine rejects 200 J of waste 

heat per cycle, how much heat energy from the hot reservoir is required per cycle to 

do 300 J of useful work per cycle?” You want students to understand that a big part of 

heat engine analysis is simple bookkeeping—just as energy conservation has been all 

along. Note the emphasis here on “per cycle.”

You can introduce the idea of efficiency at the same time. I define thermal 

efficiency as

thermal efficiency = =
what you get

what you
η

  had to pay to get it
out

H

=
W

Q
.

Students especially like this definition; it “makes sense” to them. The fact that the 

second law of thermodynamics sets an upper limit on η  will arise later, but it’s best 

not to get into that at the early stages of discussing heat engines. 

Energy flow diagrams and pV diagrams are nicely combined in exercises like the 

following:

What are out ,W  H ,Q  and η  for the heat engine shown in Figure 15?

FIGuRE 15: wHAT IS THE EFFIcIENcy OF THIS HEAT ENGINE?



 55

Using Multiple Representations to Understand Energy

Questions such as this focus on the fundamental ideas of heat engines without 

getting bogged down in detailed calculations of heat and work. In this case, the 

two sides of the cycle shown with negative heat are processes where the engine 

temperature is falling. Thus, CQ  = 90 J + 25 J = 115 J. The other two sides are 

processes where the engine temperature is rising, so those are processes where heat 

is flowing in from the hot reservoir.

The work done per cycle by the engine is the area inside the curve. Because the 

curve is a simple rectangle,   
Wout = (300,000 Pa) ×  (100 ×10−6  m3) = 30 J.

 We can then 

use energy conservation to calculate   
QH =Wout +QC = 145 J  per cycle. Now that we 

know all the pieces, we find the thermal efficiency to be η = = =W Q
out H

/ . %.0 21 21

Note: I recommend an early introduction to pV diagrams. With sufficient earlier 

practice, students can now use pV diagrams as a useful representation for 

understanding heat engines. If pV diagrams are only now being introduced, students 

will be trying to use a new and unfamiliar tool for understanding the new and 

unfamiliar concept of the heat engine. Multiple representations are powerful tools, but 

they have to be phased in gradually, as the opportunity arises, rather than unloaded 

on the students all at once.

Assessment Question 4.1: Rank in order, from largest to smallest, the work 

performed by each of these heat engines. Then rank in order, from largest to 

smallest, the thermal efficiencies of the engines.

Answer: D A B CW W W W> = > and η η η η
D A C B
> > > .  The work done is 

  
Wout = QH −QC.  This is 40 J, 40 J, 30 J, and 50 J for engines A–D. The effi-

ciency is η =W Qout H/ .  This is 40 percent, 20 percent, 33 percent, and 56 

percent for engines A–D.

Assessment Question 4.2: How much heat is exhausted to the cold reser-

voir by the heat engine represented by this pV diagram?
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Answer: 285 J. From energy conservation,   
QC = QH −Wout .  The two heats 

shown represent heat flowing in from the hot reservoir, so H 315 J.Q =  Work is 

the area inside the curve, which we can compute as the area of the triangle: 

  
Wout =

1
2
× (200,000 Pa) × (300 ×10−6  m3) = 30 J.  Thus C 285 J.Q =

Conclusion

This essay has looked at some of the many ways in which energy and energy-related 

processes can be represented. The emphasis has not been on the mathematical 

details of working energy problems but rather on the “big picture” of how we think 

about energy, how we understand the major energy-related concepts, and what we 

want our students to remember about energy.

Multiple representations of energy knowledge allow students to reach a deeper 

understanding of what energy is all about. Students have little trouble applying the 

necessary mathematics if they are able to reason their way through a problem. But the 

converse is not true; there’s no evidence that a detailed focus on equations and plug-

and-chug problems leads to a deeper understanding of energy. 

The different representations of energy are not all that a student must learn, 

of course, but a student who can easily move between different representations of 

knowledge is well on his or her way to mastery of the subject.
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